
WebGPU is Not
Just About the Web

Élie Michel
Adobe Research

emichel@adobe.com

QCon London, March 2023

[Intro Story]

2

This was a classroom in 2020: a bunch of white names on a black background, and a
teacher, you, speaking in the void. Your students are doing a (not so) practical
session for a Computer Graphics lecture.

You see these raised hands? These are macOS users.

[Intro Story]

3

All macOS users have the very same problem: the initial code base does not build…
This is when you realize that having a portable code base for your lecture is
important, and that it is tricky when the lecture is about real-time graphics!

4

And this is you live-backporting your codebase to an older version of OpenGL in
front of your (remote) students because Apple stopped at 4.1 and is now even
deprecating OpenGL altogether. Have fun!

Key Points

- State of native GPU programming
It’s complicated to find a good portable graphics API, WebGPU is a good candidate.

- WebGPU for native development
How to get started nowadays.

- Current state of WebGPU
Limitations and remaining design decisions.

5

This brings us to today’s topic: we’ll first see why it is so uneasy to have a portable
code base for real-time graphics, and more generally GPU programming, and how
WebGPU can help here.

Then gets our hands more concretely on WebGPU in the context of native desktop
applications (as opposed to web), as it’s also been designed for this use case!

And finally a note about whether it is the right time to switch or not, since WebGPU is
still a Work in Progress.

About myself

What is the most relevant to this talk:

- I write a lot of research prototypes with real-time graphics.

- I teach Computer Graphics.

6

https://github.com/eliemichel
http://eliemichel.fr

https://eliemichel.github.io/LearnWebGPU

I am researcher at Adobe Research, and this lead me to do a lot of prototypes where
I need both to iterate quickly and to access low-level-enough things. Each time I
restart I can wonder whether I’m using the right tools so every once in a while I
update my toolbox.

Teaching CG makes me wonder even more what should one learn to get started in
graphics now or in a few years from now. This is how I started writing my Learn
WebGPU guide for native C++, thinking about students in ca. 2 years from now.

I also do a lot of other things, check out http://eliemichel.fr and my GitHub profile!

https://github.com/eliemichel
http://eliemichel.fr
https://eliemichel.github.io/LearnWebGPU
http://eliemichel.fr

Graphics APIs

7

Graphics APIs

- Why do we need one?

- What are the options?

- What is the problem?

8

Assumptions

9

- We need to use the GPU (for massively parallel computing, SIMD).

- We want our code to be portable.

Graphics API

Before looking into graphics API, let’s assume that we want to do GPU programming,
otherwise there’s no point obviously. But you are likely to need GPU computing,
because it’s about much more than 3D graphics, it’s about massively parallel
(Single Instruction Multiple Data-parallel) computation, which covers a lot of topics like
various simulation (mechanics, chemistry, etc.) or neural net evaluation, more
generally large matrix products, etc. You can get amazing perf improvement with GPU
programming done right if your problem is indeed parallelizable. Plus using the GPU
frees the CPU so that it can focus on other tasks.

Second assumption: you want a minimum of portability. If you’d only target a single
OS, I’d recommend to look into this OS’ idiomatic API for graphics.

Why do we need one?

10

The GPU is a peripheral, i.e. it is a remote processor.

Graphics API

First important thing: the GPU if far away from the main processor. In the case of
high-performance computing, this matters a lot. If you’re used to web front dev, think
of the GPU as a server, and the CPU would be the client.

Each processor has its own memory; RAM for the CPU, VRAM for the GPU, and
everything communicates through a PCIexpress wire connection.

Why do we need one?

11

The GPU is a peripheral, i.e. it is a remote processor.

Graphics API

As programmers, we write code for the CPU and only indirectly interact with the
GPU.

Why do we need one?

12

The GPU is a peripheral, i.e. it is a remote processor.

Graphics API

Driver

More exactly, we talk only with the driver of the GPU, and this is where the Graphics
API is used: it’s the language that the driver, or any layer on top of it, speaks.

NB: Sometimes it’s a bit more than an API, it can also come with an SDK of utilities
provided around the core API.

What are the options?

13

Graphics API

Vendor specific APIs.

OS specific APIs.

Portable APIs.

There are many different drivers, hardware vendors, operating systems, etc. So we
end up with a lot of different APIs.

What are the options?

14

Graphics API

Vendor specific APIs.

OS specific APIs.

Portable APIs.

CUDA

Hardware manufacturers have their own API, even their own undocumented low level
API I assume. And sometimes they provide public APIs specific to their devices, the
most common one bing CUDA, used for General Purpose GPU programming
(GPGPU).

I mention Mantle here to show another example, although it’s no longer a thing, it was
successfully proposed as a base for Vulkan so now AMD moved to Vulkan.

Vendor specific APIs.

OS specific APIs.

Portable APIs.

What are the options?

15

Graphics API

CUDA

GNM/GNMX

Then comes OS-specific APIs. DirectX/Direct3D is a whole family of APIs actually,
each version being quite different from the previous ones (we’re at D3D12 now), it has
been used a lot for video games in the past.

Metal is much more recent but has really become the main API for all Apple devices.

And I am citing the PlayStation API just as an example of other devices that have their
own ecosystem, but we are focusing on desktop here.

Vendor specific APIs.

OS specific APIs.

Portable APIs.

What are the options?

16

Graphics API

CUDA

GNM/GNMX

Finally the portable APIs, developed by consortiums that usually take longer to make
decisions but unify the use of graphics APIs.

The main one has been OpenGL for a long time, and it comes with a flavor for
embedded and mobile systems (OpenGL ES), which is ported to the Web (WenGL).

Vendor specific APIs.

OS specific APIs.

Portable APIs.

What are the options?

17

Graphics API

CUDA

GNM/GNMX

OpenGL was focusing on 3D graphics, and its design started when it was the only
thing GPUs were used for. When non-graphics use started (GPGPU), a second API,
OpenCL, was designed. It is a portable response to CUDA, even though CUDA might
have a larger user base actually.

Vendor specific APIs.

OS specific APIs.

Portable APIs.

What are the options?

18

Graphics API

CUDA

GNM/GNMX

OpenGL being backward compatible, it eventually became complicated to keep on
supporting it all. In 2018, Apple started deprecating it, maybe because it is making
graphics drivers too heavy, maybe because they want to force their Metal API.

Anyways, the need for a next gen OpenGL had been considered already, and its
name is Vulkan. Vulkan is much more low level than OpenGL, but it is also closer to
the design of nowadays’ GPUs, supports both desktop and embedded/mobile
devices, etc… But sadly it is not supported by Apple. (There’s MoltenVK to address
this, but it’s not official).

Vendor specific APIs.

OS specific APIs.

Portable APIs.

What are the options?

19

Graphics API

CUDA

GNM/GNMX

And now there is WebGPU, that we can see as a graphics API (even though it is not
implemented at driver level but rather in the application’s software), and WebGPU is
meant to be very portable because it is a strict requirement for the Web!

What are the options?

20

Graphics API

Source: https://twitter.com/13xforever/status/1364893881368793089

Source: https://www.ravbug.com/graphics/

A truly portable API?

Tough choice…

https://twitter.com/13xforever/status/1364893881368793089
https://www.ravbug.com/graphics/

Portability is a strict requirement.

How does the Web do?

21

Graphics API

The common denominator

The web cannot negotiate with portability. The solution adopted with WebGL was
to support the common denominator of all devices (OpenGL ES), but this is thus
limited by the lowest end device.

How does the Web do?

22

Graphics API

?

How can WebGPU do differently? The designers of WebGPU were facing the very
same problem as us trying to build a portable native application (the web browser, in
their case).

How does the Web do?

23

Graphics API

Hardware

JavaScript

Duplicated development effort…

They could not use out-of-the-box portability, they had no choice but to implement
WebGPU multiple times, on top of multiple graphics APIs.

How does the Web do?

24

Graphics API

Hardware

JavaScript

Duplicated development effort… made reusable!

webgpu.h

WebGPU native

The good news is: they shared this annoying work! Besides exposing WebGPU to
in-browser JavaScript, the browser developers also made this abstraction layer
available for native development.

Official webgpu.h header: https://github.com/webgpu-native/webgpu-headers

https://github.com/webgpu-native/webgpu-headers

How does the Web do?

25

Graphics API

Hardware

JavaScript

Duplicated development effort… made reusable!

webgpu.h

WebGPU native

Render Hardware Interface (RHI)

Note that given the overall state of graphics APIs, this is actually a somewhat
common pattern in projects that intend to be largely portable. It is often called a
Render Hardware Interface (RHI).

Render Hardware Interface (RHI)

26

Graphics API

Unreal Engine RHI: https://docs.unrealengine.com/5.0/en-US/API/Runtime/RHI

Unreal Engine has its game-specific RHI.

https://docs.unrealengine.com/5.0/en-US/API/Runtime/RHI/

Render Hardware Interface (RHI)

27

Graphics API

Qt RHI: https://doc.qt.io/qt-6/topics-graphics.html

Qt contains a QRhi abstraction layer that does a similar job.

https://doc.qt.io/qt-6/topics-graphics.html

Render Hardware Interface (RHI)

28

Graphics API

NVRHI: https://github.com/NVIDIAGameWorks/nvrhi

This is another example of domain-agnostic RHI proposed by NVidia (although I’m not
sure it is intensively used)

https://github.com/NVIDIAGameWorks/nvrhi

Render Hardware Interface (RHI)

29

Graphics API

Driver

Driver

LibraryApp

App

Low-level APIRHI

OpenGL

There is a shift from having the user-facing graphics API maintained by driver
developers to having an extra layer enabling third party intermediate libraries. This
makes the life of hardware manufacturers and OSes easier and more focused, and
enables RHIs that are potentially domain specific, or that are challenging each others
to provide nice and efficient features.

Recap

30

Graphics API

- Portability + Performance
We need a Render Hardware Interface (RHI).

- Standard and domain agnostic
These are requirements of WebGPU.

- Future-proof
WebGPU will be maintained for a long time.

To recap:
1. In order to be both portable and targeting high performance applications,
WebGPU needs to be a Render Hardware Interface (RHI) implemented on multiple
low level APIs.
2. Contrary to other RHI, it is domain-agnostic, because the Web is used for
potentially anything!
3. I believe that WebGPU is future-proof, because it will become the graphics API for
the web, so it will need to be maintained and evolve, and there will be an important
user base that can develop techniques and documentation that are also useful to
native applications.

Bonus

31

Graphics API

- Reasonable level of abstraction
More modern than OpenGL, easier to use than Vulkan.

- Concurrent implementations
Chrome and Firefox are challenging for the best performances.

As a bonus, I find it a nice trade-off between OpenGL and Vulkan, in my experience.
And having multiple concurrent implementation will likely drive performances up!
(Think how we ended up doing something efficient with JavaScript although it started
as a hacky language.)

WebGPU native
How to get started

32

Let us now dive a little bit in the code!

Outline

- How to build a hello world?

- What is a typical application skeleton?

- How to debug?

33

Getting started with WebGPU native

https://eliemichel.github.io/LearnWebGPU

To go further:

Of course I don’t have the time here to go through a full intro, so I’ll first show the very
first steps, namely building a project using WebGPU, then show a basic application
skeleton and finish with an important note about how to debug GPU programming,
because it requires different tools than CPU programming.

For more info I invite you all to follow my detailed programming guide!
https://eliemichel.github.io/LearnWebGPU

https://eliemichel.github.io/LearnWebGPU
https://eliemichel.github.io/LearnWebGPU

Hello World

34

Getting started with WebGPU native

Program Skeleton

Debugging

First lines

35

Getting started with WebGPU native

Of course we start by including the header. It is commonly located in a webgpu/
directory in the projects I’ve consulted (and in particular it is mandatory in projects
using emscripten)

First lines

36

Getting started with WebGPU native

Then we create our first WebGPU object. Objects are always created using a
wgpuCreateSomething function, which always takes a pointer to a
SomethingDescriptor as argument. This is a way to pass a lot of argument
without having complicated function signatures, and to easily have auxiliary function
build the descriptor.

The function returns a handle of type WGPUSomething, which is simply a pointer so
it can be costlessly copied around.

Descriptors always have a nextInChain field, that must be set to nullptr (or
NULL in C) unless we are using the extension mechanism that this pointer is for.

First lines

37

Getting started with WebGPU native

We can detect errors by checking that the returned handle is non null.

First lines

38

Getting started with WebGPU native

Descriptor

Handle

This Descriptor+Handle pattern is a recurring idiom of the API.

Simple API Types

39

Getting started with WebGPU native

Descriptor

Handle

Encapsulates arguments passed to object Create procedures.
Always contain a nextInChain pointer for extension mechanisms.

Opaque representation of driver-side objects.
Can be passed by value, it’s juste a pointer.

Simple API Types

40

Getting started with WebGPU native

Descriptor

Handle

Enum

Struct

Encapsulates arguments passed to object Create procedures.
Always contain a nextInChain pointer for extension mechanisms.

Opaque representation of driver-side objects.
Can be passed by value, it’s juste a pointer.

Named int32.
Values formed as WGPUEnumType_EnumValue.

Mainly used to hierarchise info in descriptors.

There are also 2 families of types that appear in the API, enum and struct, which are
both used for organizing the construction of descriptor. And this is it, no convoluted
types, and no hidden state!

- Where is webgpu.h?

- Where are symbols defined?

(Not in the driver)

Building

41

Getting started with WebGPU native

Okey, this code sample is simple enough, but how do we build it exactly? Where do I
get this webgpu.h file, and where are they effectively implemented? (i.e. how do I
link my program to WebGPU?)

Multiple distributions

42

Building with WebGPU

wgpu-native (Firefox)
https://github.com/gfx-rs/wgpu-native

Dawn (Chrome)
https://dawn.googlesource.com/dawn

emscripten
https://emscripten.org/

For OpenGL, we had Glad https://glad.dav1d.de

The answer is: there are multiple answers. Both Firefox and Chrome had their
WebGPU backend be a standalone project that we can link against. And when
cross-compiling to the web using emscripten, the compiler converts calls to webgpu.h
symbols into calls to the JavaScript WebGPU API.

When first looking at WebGPU, I was looking for a dev experience as simple as using
glad for OpenGL: just get a few header and C files and copy them into your project, or
automatically generate them by including a CMakeLists.txt.

https://github.com/gfx-rs/wgpu-native
https://dawn.googlesource.com/dawn
https://emscripten.org/
https://glad.dav1d.de/

Which distribution?

43

Building with WebGPU

Rust-based Cannot easily build from scratch in a C++ project

Dynamic library Auto-generated builds available

Non-standard build system (needs depot_tools and Python)

Stripped-down pre-generated version?
Not straightforward, could get at least a CMake/Python only version

Zig build? (https://github.com/hexops/mach-gpu-dawn)
No MSVC version

When first looking at WebGPU, I was looking for a dev experience as simple as
using glad for OpenGL: just get a few header and C files and copy them into your
project, or automatically generate them by including a CMakeLists.txt. I want
WebGPU to remain a simple dependency, that does not impose anything to the
parent project.

But it was not that easy out-of-the-box. Because an OpenGL wrangler like glad is a
thin layer that just queries procedures that are actually implemented by the driver, but
a WebGPU backend is actually a lot more code.

First, wgpu-native is a rust library, so no easy way to build from scratch while doing a
C++ project. Hence I turned to Dawn, but it uses a non-standard build system,
which meant disrupting my build system although I wanted to keep it simple. I built a
small version of Dawn, but it is still taking some time to build.

I then turned to precompiled binaries, first considering Zig for a dependency-less
cross-platform build of Dawn, but no support for MSVC, so then turning back to
wgpu-native: since we’re using precompiled binaries, it is not a problem that it is
written in rust, and they are regularly auto-generating builds for all platforms.

https://github.com/hexops/mach-gpu-dawn

Repackaged WebGPU distributions:

- CMake integration (emcmake-ready)

- Minimum dependencies

- Interchangeable distributions

Which distribution?

44

Building with WebGPU

https://github.com/eliemichel/WebGPU-distribution

#define WEBGPU_BACKEND_WGPU
Curated precompiled binaries

#define WEBGPU_BACKEND_DAWN
Get source using FetchContent
No depot_tool, only Python

On the long run, this should be handled by wgpu-native and Dawn themselves imho

I ended up with two solutions that are (almost) transparently interchangable, cross
plateform, and minimize dependencies.

The fastest one is wgpu-native prebuilds (with some fixes because at the time some
builds were broken or misnamed). And for from-source build there is the Dawn option,
which still requires Python tu autogenerate some parts of the code but for which I
could get rid of the depot_tools dependency.

Even though I would have preferred not to, I ended up repackaging what I called
distributions of WebGPU. I believe this will be eventually provided by the upstream
libraries, I’m going to open PRs (might taks some time on Dawn’s side though, not
easy to disrupt an existing build system cause nobody wants to spend time on it
usually).

https://github.com/eliemichel/WebGPU-distribution

Building

45

Getting started with WebGPU native

Any distribution

> cmake -B build && cmake --build build
> build/App
WGPU instance: 0000025FAF74C390

So, let’s get back to building our hello world! It’s now as simple as getting one of the
distributions (the webgpu directory next to the main.cpp), adding a very simple
CMakeLists.txt and building like any other CMake project!

Nothing crazy happens here but if you see a non null pointer after “WGPU instance:”
you’re good to go.

Program Skeleton

46

Getting started with WebGPU native

Debugging

Hello World

Program skeleton

47

Getting started with WebGPU native

(Note that I am wrapping this skeleton into an Application class, to avoid using
globals, and because that’s usually what one does for many other reasons.)

Device creation

48

Program skeleton

Device:
CPU-side object

The first step is to initialize the Device, which is a logical object representing the
underlying graphics device. This is an important step when it comes to figuring out a
good performance/portability trade-off as this is where we consider device
capabilities (more on this later on).

Also, this step is slightly different for native and web dev, this is one of the very few
places where there will be a #ifdef __EMSCRIPTEN__ in your code base.

Resource loading

49

Program skeleton

GPU-side memory
allocation

+
Data upload

Then we setup resources, namely we allocate memory on the VRAM, and upload
data to this memory. Memory is laid out in a special way on the GPU, allocators are
very specific to the usage that is made with the data. First there is the distinction
between buffers and textures, because their access is wired up differently, and for
each of these there are numerous usage flags that must be set up carefully to enable
optimizations (like memory mapping, streaming etc.)

Textures are accessed in such a specific way that there is an entire object dedicated
to setting up the way data is queried: the samplers.

Among resources, there are also shaders, which are programs meant to run on the
GPU itself (contrary to our C++ code that only runs on the CPU, remember).

(Of course, resources can be updated, rebuilt or added dynamically during the life of
the application, this is just a basic skeleton for illustrative purpose.)

Resource binding

50

Program skeleton

Memory access
from shaders

Once memory is set up, we can define what a particular shader execution will be able
to see and/or edit from this memory. Again, this is used by the backend/driver to more
efficiently lay out resources and organize computations at low level.

Pipeline creation

51

Program skeleton

Fixed stages
+

Programmable stages

Lastly, the GPU chip has an important specificity that the CPU does not have: its
execution process is a mix of fixed function and programmable stages. The fixed
part of this pipeline is only tuned by setting up some pipeline parameters, and we
must prepare on or multiple pipeline setups ahead of time, so that in the application’s
main loop we just quickly switch and invoke them.

Pipeline creation

52

Program skeleton

Fixed stages
+

Programmable stages

WGSL shaders

The programmable stages are tuned by specifying an entire program, which is what
a shader is for. In WebGPU there are 3 types of shaders: vertex, fragment and
compute shaders.

WebGPU comes with its own dedicated shader language called WGSL, which has
a slightly different syntax from the usual GLSL/HLSL but accesses the same
underlying primitives. On desktop, it is possible to use other shader languages, in
particular SPIR-V, but this will not be available for the web on the long run.

Both Firefox and Chrome provide a shader cross-compiler (resp. Naga an Tint) that
can be used to convert code bases from GLSL/HLSL (and even SPIR-V) to WGSL.

Commands

53

Program skeleton

Copy
Draw

Dispatch

We’re now all set, we can use the command queue from the CPU to invoke 3D
rendering and compute pipelines. From the CPU’s point of view, this is a “fire and
forget” operation: the command is emitted and the CPU program continues without
waiting for the GPU to respond or even to have started considering the command.
What is ensured is that commands will be processed in the way they were sent, which
is enough for a lot of cases!

Read back

54

Program skeleton

Asynchronously get
data back from the

GPU

There are however some cases where it is needed to get some data back from the
GPU. Always keep in mind that this takes time, wrt. the typical notion of time of this
kind of application, so do it only if really needed. If you can process things on the
GPU in a compute shader instead, it is usually better.

You will eventually need it though, aither to get back some result that must be stored
on disk, or because you need information from the GPU evaluation to allocate new
buffers (the GPU cannot allocate itself). In this case, the read operation is
asynchronous. You specify a callback, that will be called once the read operation is
done. This way, your program can keep on running other things, it is not blocked by
the lengthy read operation. This pattern can make coding a bit tricky sometime, or
lead to simply writing a polling loop (see example later on) when you really need to
block until you got the result.

Termination

55

Program skeleton

Destroy resources
+

Drop/Release objects

And of course, at the end of the program comes the clean up, freeing resources. This
is where wgpu-native and Dawn still disagree on how the API should look like
(more on this later on), so you will have to use the backend-specific macros until they
finally settle!

Swap Chain (for graphics use only)

56

Program skeleton

initSwapChain(); // For graphics Configure
framebuffer
presentation

One extra step is needed when you want to display things on screen (usually the case
when doing 3D graphics, but is not mandatory if you are doing GPGPU): the swap
chain handles the presentation of rendered images onto the screen, via the
framebuffer provided by the OS. This OS-part is typically handled by a cross-platform
windowing library like GLFW.

Demo

57

Program skeleton
Extra utilities:

- glfw3webgpu
https://github.com/eliemichel/glfw3webgpu

- imgui_impl_wgpu
https://github.com/eliemichel/imgui/tree/eliemichel/portable_wgpu_backend

Here is an example of 3D renderer wrote using WebGPU, running on desktop. It
works with either wgpu-native or Dawn.

Small extras I had to develop for this: A procedure to get a WebGPU surface out of
a GLFW window (I mostly got it from wgpu-native’s demo). This belongs imho in
GLFW because it is highly OS specific, and GLFW is here to hide the OS-specificities
away. Secondly, I use Dear ImGui for the UI, like a lot of people for this kind of small
demos, but its wgpu backend was not entirely ready. It was working only with Dawn
and emscripten, so you can get it from my branch (until the PR is merged).

https://github.com/eliemichel/glfw3webgpu
https://github.com/eliemichel/imgui/tree/eliemichel/portable_wgpu_backend

Focus on device creation

58

Program skeleton

initSwapChain(); // For graphics

I am not going to detail all these steps, but let’s focus on the device initialization,
which can easily be underlooked or quickly copy-pasted once for all because it feels
uninteresting.

Device creation

59

Getting started

Device creation (for native targets)

60

Getting started

It’s verbose…

First thing: it’s a bit verbose for C++. That’s a side problem, but let’s address it.

(NB: this part about the C++ style wrapper was not presented live, but I include it in
the notes since the slides were ready anyways.)

Device creation (for native targets)

61

Getting started

It’s verbose…

Almost always
nullptr

Among things cluttering the code, there is this nextInChain pointer for extensions
that is almost always set to null.

Device creation (for native targets)

62

Getting started

C-style OOP

It’s verbose…

There is also the C-style naming that is needed to make method membership clear
but don’t benefit from C++ usual OOP notation.

Device creation (for native targets)

63

Getting started

Not in webgpu.h

It’s even more verbose
in practice

It’s verbose…

It’s actually even more verbose in reality because these synchrounous variants are
my own construction around WebGPU’s async functions.

Device creation (for native targets)

64

Getting started

C-style namespace

It’s verbose…

Also the C-style poor man’s namespacing is quite redundant.

Device creation (for native targets)

65

Getting started

- Compatible with any distribution
- Included in WebGPU-distribution
- No overhead

Using webgpu.hpp for lighter code
https://github.com/eliemichel/WebGPU-Cpp

For all these reasons, and even a few more, I’ve developped a thin C++ wrapper
around WebGPU. It is only cosmetic, it hides nothing and introduces no overhead.
Converting from and to this wrapper can be done transparently. I’m not a big fan of
wrappers in general but I’m happy with this solution!

The wrapper is auto-generated from the source, so that it can easily handle
differences among backends, and tightly follow their evolution.

Note that a C++ wrapper is provided by Dawn, but afaik it is not portable to other
backends because it directly calls Dawn-specific things instead of only relying on the
official webgpu.h header.

https://github.com/eliemichel/WebGPU-Cpp

Device creation (for native targets)

66

Getting started

Two-stage creation

1. Adapter

2. Device

Limits

Limit = Max texture dimension, Max buffer size, Max vertex attributes, …

Let’s get back to device initialization now. It is a 2 stage process: we first get the
adapter, for which we can query physical limits and capabilities, and we then create a
device that compiles with the adapter. The adapter is given, the device is chosen
(though its creation may fail).

Adapter and device limits

67

Device creation

Option A: Use default device limits

- Potential failure anywhere in the code (limits exceeded)

- Different behavior on different runtime contexts

Option B: Specify strict limits

- Only fails at device creation

- Same limits for everybody (once the device is created)

Better portability

There are two way of managing device creation: the lazy one and the good one.

If you just pass through and automatically create a device that has the same limits
than the adapter, you will not statically know the device capabilities, which means
they could be infringed at any time by your program. No way to now in advance, or
you need a way to carry the capabilities around everywhere you may exceed them. A
lot of room for annoying hard-to-repruduce bugs.

The good solution is to explicitely specify upon device creation all the requriements of
your program. Start with the strictest, and everytime you exceed the limits on your
device, increase the requirements. I’ll then know that if the device creation step
passes, everything else down the road should go all right! This is what this
device creation mechanism is for actually.

Adapter and device limits

68

Device creation

Adapter

Supported limits

✔ Supported

High quality tier

Medium quality tier

Low quality tier

Limit presets

❌ Not supported

✔ Supported
Device

Required limits

Of course if you want your application to be portable while benefitting from the
capabilities of high quality devices, you will need to consider multiple paths of
execution. But again with this mechanism everything can be settled at
initialization. Then you just need to remember which quality tier your application is
running on to decide on high level strategies, or to conditionally disable some of your
features.

For web target

69

Device creation

In emscripten’s shell JavaScript:

JavaScript

One last note: as I was saying things are different when cross-compiling for the
Web. The device creation in this case is handled on the JavaScipt side, in a few
lines of code wrapping the WebAssembly module invokation. Emscripten then
provides a way to get this device on the C++ side.

Debugging

70

Getting started with WebGPU native

Hello World

Program Skeleton

An important part of coding is debugging, and debugging GPU code has some
specificities.

Error callbacks

Right after device creation:

71

Debugging

wgpuDeviceSetUncapturedErrorCallback(device, /* ... */);

wgpuDeviceSetDeviceLostCallback(device, /* ... */);

auto handle = device.setUncapturedErrorCallback([](ErrorType type, char const* message) {
 std::cout << "Device error: (type " << type << ")";
 if (message) std::cout << "\n" << message;
 std::cout << std::endl; // <-- Put a breakpoint here!
});

With webgpu.hpp:

First thing to do, without an once of hesitation, is to set up device error callback.
Without this you’re walking in the dark and likely getting nowhere. Whenever an error
occurs in a call to a webgpu procedure, the “uncaptured error callback” is called with
details coming from the backend to help one debug. It is also good to put a break
point in there so that you can inspect the stack where it failed (like for any
debugging).

Error callbacks

Dawn gives better error messages:

wgpu-native
MissingTextureUsage(MissingTextureUsageError { actual: STORAGE_BINDING, expected: TEXTURE_BINDING })

Dawn
[Texture "DualContouring Position"] usage (TextureUsage::StorageBinding) doesn't include
TextureUsage::TextureBinding.

 - While validating entries[2] as a Texture.

Expected entry layout: { binding: 6, visibility: ShaderStage::Compute, texture: { sampleType:
TextureSampleType::Float, viewDimension: TextureViewDimension::e3D, multisampled: 0 } }

 - While validating [BindGroupDescriptor "DualContouring Bake Fill"] against [BindGroupLayout
"DualContouring Bake Fill"]

 - While calling [Device "My Device"].CreateBindGroup([BindGroupDescriptor "DualContouring Bake Fill"]).

72

Debugging

Note that wgpu-native and Dawn return quite different types of messages. Dawn is
more human readable, and uses object labels to give hints, which is nice. Messages
from wgpu-native are automatically formatted by rust, they usually contain the
information needed but can be a bit more cryptic and laconic.

Error callbacks (shader compiler)

Naga (wgpu-native)
Validation(ShaderError { source: "struct VertexInput {\n\t@location(0) positi[...]", label: None, inner:
WithSpan { inner: EntryPoint { stage: Fragment, name: "fs_main", source: Function(Expression { handle: [17],
source: Compose(ComponentCount { given: 3, expected: 2 }) }) }, spans: [(Span { start: 1050, end: 1074 },
"naga::Expression [17]")] } }))

Tint (Dawn)
Tint WGSL reader failure: :39:20 error: no matching initializer for vec2<f32>(abstract-float,
abstract-float, abstract-float)

4 candidate initializers:
 vec2(x: T, y: T) -> vec2<T> where: T is abstract-int, abstract-float, f32, f16, i32, u32 or bool
 vec2(T) -> vec2<T> where: T is abstract-int, abstract-float, f32, f16, i32, u32 or bool
 [...]

 let lightColor1 = vec2<f32>(1.0, 0.9, 0.6);
 ^^^^

 - While validating [ShaderModuleDescriptor]
 - While calling [Device "My Device"].CreateShaderModule([ShaderModuleDescriptor]).

73

Debugging

Here is another example, coming this time from the shader cross-compiler. Again,
Dawn is clearer.

Dev Tools

74

Debugging

RenderDoc

NSight

Graphics debuggers

Now callback and breakpoints are nice to debug things that happen on the CPU, but
when issues are on the GPU side, we’re still in the dark. Especially because
communication between CPU and GPU take time, it is not possible to have such a
thing as a breakpoint there, neither can we introspect a stack. Instead, we record
everything that the CPU sends to the GPU so that we can replay it step by step.

Graphics debugger are dedicated to this task, the most common ones being:
 - RenderDoc: https://renderdoc.org
 - NVidia NSight Graphics: https://developer.nvidia.com/nsight-graphics

https://renderdoc.org/
https://developer.nvidia.com/nsight-graphics

Dev Tools

75

Debugging

RenderDoc

NSight

Graphics debuggers

Vulkan commands

A small problem when doing using WebGPU (or any RHI) is that the debugger only
captures calls to the low-level API, so we need to manually figure out the mapping
between these low-level API calls and our initial WebGPU commands. Maybe when
WebGPU becomes common enough debuggers will start providing this but likely not
in the near future.

Dev Tools

76

Debugging

Chrome Dev Tools

As an alternative, when cross-compiling to the Web we can benefit from the web
browser’s debug tools, which know WebGPU natively. They are not as mature as
desktop graphics debuggers that have been around for a while but this can also be
helpful.

Documentation

77

Debugging

WebGPU JavaScript spec

https://www.w3.org/TR/webgpu

WGSL spec

https://gpuweb.github.io/gpuweb/wgsl

And read the webgpu.h header…
https://github.com/webgpu-native/webgpu-headers/blob/main/webgpu.h

Of course chasing bugs also comes with inspecting the documentation, so here are
some links to the WebGPU spec. The spec is for JavaScript, but in a lot of cases
concepts maps naturally to the native API. I also often end up reading webgpu.h
directly to get the fine details.

https://www.w3.org/TR/webgpu
https://gpuweb.github.io/gpuweb/wgsl
https://github.com/webgpu-native/webgpu-headers/blob/main/webgpu.h

Profiling

Warning: different timelines!

78

Debugging

Together with debugging usually comes profiling/benchmarking. Again things are a bit
unusual compared to CPU programming, because of the asynchronocity: the CPU
and GPU live on different timelines, and the CPU never knows when the GPU
starts and ends processing commands.

Profiling

In theory: Timestamp queries

79

Debugging

QuerySetDescriptor querySetDesc;
querySetDesc.count = 1;
querySetDesc.type = QueryType::Timestamp;
QuerySet querySet = device.createQuerySet(querySetDesc);

ComputePassTimestampWrite timestampWrites;
timestampWrites.location = ComputePassTimestampLocation::Beginning;
timestampWrites.queryIndex = 0;
timestampWrites.querySet = querySet;

// [...]

In theory, a mechanism is provided for this: timestamp queries. These are timers
injected in the command queue, thus running on the GPU and measuring true
GPU-side timings.

Profiling

80

Debugging

QuerySetDescriptor querySetDesc;
querySetDesc.count = 1;
querySetDesc.type = QueryType::Timestamp;
QuerySet querySet = device.createQuerySet(querySetDesc);

ComputePassTimestampWrite timestampWrites;
timestampWrites.location = ComputePassTimestampLocation::Beginning;
timestampWrites.queryIndex = 0;
timestampWrites.querySet = querySet;

// [...]

Device error: (type 1)
Timestamp queries are disallowed because they may expose precise timing information.
 - While validating [QuerySetDescriptor]
 - While calling [Device "My Device"].CreateQuerySet([QuerySetDescriptor]).

Device error: (type 4)
MissingFeatures(MissingFeatures(TIMESTAMP_QUERY))

In practice:

In theory: Timestamp queries

But for security reasons, they are not available (or just not implemented in the case
of wgpu?). Since this is a web only constraint, it may be possible to get them to work
when targeting only desktop applications, at least at dev time, but this means the
application’s behavior cannot rely on these to make choices about execution strategy.

Profiling

81

Debugging

Using Debug Markers

computePass.pushDebugGroup("MC: Count vertices"); // <-- Start
computePass.setPipeline(pipeline);
computePass.setBindGroup(0, bindGroup, 0, nullptr);
computePass.dispatchWorkgroups(resolution - 1, resolution - 1, resolution - 1);
computePass.popDebugGroup(); // <-- End

Another nice profiling utility that does work (Dawn only at the moment) are debug
groups. This can be used to visualize custom profiling sequences directly in Nsight!

Example: Distance Field Contouring

Setup:

- 2M voxels

- 1 signed distance and normal per voxel

- Dynamic scene

Goal: Generate a contour mesh on the fly

82

Debugging

Marching Cubes Dual Contouring

In order to illustrate this profiling part, I’ve done a little experiment in a scenario that
mixes both compute and 3D rendering pipelines. I compare two different SDF
contouring algorithms on two different backends.

Benchmarking
(gpu time)

83

Debugging

Vulkan backend, Windows 10, Nvidia Titan RTX

Be careful with these figures. I did not go through a detailed benchmarking
experiment. Is the difference due to Tint injecting bound clipping when indexing
arrays?
Is there an equivalent of chrome-canary’s
--enable-dawn-features=disable_robustness that I should have enabled somewhere in
the cmake config to make Dawn competitive? Was the test scenario challenging
enough to stress test tricky parts of the API? Also this was tested on the Vulkan
backend only, how does it go for others? How does this compete with a manual
Vulkan implementation?

I think an interesting message here is actually that wgpu-native and Dawn have
similar enough performances, showing how WebGPU enables the backend to be
quite close to the metal.

Is WebGPU ready enough?
(for native applications)

84

WebGPU is going to be a thing, that’s almost certain, but is it too early to make the
move?

Backend support

85

Is WebGPU ready enough?

wgpu-native Dawn

Parent project Firefox Chrome

Language Rust C++

Vulkan ✅ ✅

Metal ✅ ✅

D3D11 🛠 ⚠ (via GLES)

D3D12 ✅ (W10+ only) ✅

OpenGL ES 🆗 (no iOS) 🛠

OpenGL ❌ ✅

Detailed support matrices:
- wgpu-native: https://github.com/gfx-rs/wgpu#supported-platforms
- Dawn: https://dawn.googlesource.com/dawn/+/HEAD/docs/support.md

Good support for
modern desktop

When it comes to desktop application, backend support has become good enough for
both wgpu-native and Dawn.

https://github.com/gfx-rs/wgpu#supported-platforms
https://dawn.googlesource.com/dawn/+/HEAD/docs/support.md

Some pain points

86

Is WebGPU ready enough?

Overall I like using WebGPU, but there are still a few pain points.

Some pain points

87

Is WebGPU ready enough?

- Async operations

bool done = false;
buffer.mapAsync(MapMode::Read, 0, sizeof(Counts), [&](BufferMapAsyncStatus status) {
 if (status == BufferMapAsyncStatus::Success) {
 const Data* countData = (const Data*)buffer.getConstMappedRange(0, sizeof(Data));
 vertexCount = countData->pointCount;
 mapBuffer.unmap();
 }
 done = true;
});

while (!done) {
 // Do nothing, this checks for ongoing asynchronous operations
 // and call their callbacks if needed
 queue.submit(0, nullptr);
}

Async operations sometimes require to write this weird polling loop where I submit
an empty queue just for the backend to check whether one of my callbacks should
be called. There are backend specific alternatives but nothing official.

Some pain points

88

Is WebGPU ready enough?

- Async operations

- Shader module introspection

@group(0) @binding(0)
var<uniform> uniforms: Uniforms;

@group(0) @binding(1)
var distance_grid_write: texture_storage_3d<rgba16float,write>;

// [...]
WGSL

Mapping binding id to variable name?

When working with shaders, I miss a lot the possibility of querying binding locations
by variable name, like glGetUniformLocation does in OpenGL. In theory one
can call Tint or Naga for this but it’s highly backend-dependent and not portable to the
web.

Some pain points

89

Is WebGPU ready enough?

- Async operations

- Shader module introspection

@group(0) @binding(0)
var<uniform> uniforms: Uniforms;

@group(0) @binding(1)
var distance_grid_write: texture_storage_3d<rgba16float,write>;

// [...]
WGSL

Mapping binding id to variable name?

Implicit pipeline creation
Raised issues: https://github.com/gpuweb/gpuweb/issues/2470

const pipeline = device.createRenderPipeline({
 layout: "auto",
 // [...]
});

There is an “auto” layout that can be used on the web to make binding setup easier,
but it has a lot of caveats and was removed from the native API (likely for the good, it
is too “high-level magic” imho).

https://github.com/gpuweb/gpuweb/issues/2470

Some pain points

90

Is WebGPU ready enough?

- Async operations

- Shader module introspection

- Differences between implementations
⬩ Dawn gives better error messages

⬩ Dawn can only handle BGRA32Unorm color target (on native targets)

⬩ Disagree on Drop/Release

⬩ Dawn uses FilterMode instead of MipmapFilterMode

⬩ wgpu-native has no support for multiview rendering

⬩ Dawn has no support for custom render target

⬩ W/o stencil, stencilLoadOp must be Clear (wgpu-native) or Undefined (Dawn)

⬩ Naga (wgpu-native) is much more strict than Tint (Dawn)

⬩ wgpu-native does not support type aliases in WGSL

⬩ etc.

And of course there are still many little differences between backends, since the
WebGPU API has not reached version 1.0 yet. They are going to converge eventually,
but I’d like to focus on one of them: the drop vs release semantics for freeing
WebGPU objects. This is the one provoking most #ifdefs in practice.

Lifetime management

91

Differences between implementations

- Drop (wgpu-native)

- Release (Dawn)

More info: https://github.com/webgpu-native/webgpu-headers/issues/9

wgpuDeviceDrop(device);

wgpuDeviceRelease(device);

wgpuDeviceReference(device);

= “This object will never be used ever again”

= “Personally, I’m done with this object”

= “I’m using this, don’t free it until I release!”

User-exposed
reference counting

wgpu-native proposes a Drop procedure, which prevents anybody else from reusing
the object. Dawn exposes a kind of reference counting mechanism where one part
of the code can “reference” the object to increment the counter, then “release” to
decrement and the object is effectively destroyed only if its reference counter falls to
zero.

Reference counting is more high level, and one can argue that it should be the
responsibility of the user of the API to manage lifetime. On the other hand, Dawn
pragmatically notes that all implementations so far already have a reference counting
under the hood, so it does not cost much to expose it.

https://github.com/webgpu-native/webgpu-headers/issues/9

Limitations

Timestamp queries

Shader compilation time
What control on caching?

Tiled rendering [link]

Can we detect it?

92

Is WebGPU ready enough?

Other debates: https://kvark.github.io/webgpu-debate

Pain points may eventually be addressed. Here are some limitations for which it is not
clear whether they will: we have mentioned the security issue there is with timestamp
queries.

Another question is shader compilation: it is done at runtime, when uploading the
shader onto the GPU (because the compilation highly depends on the device), and in
applications that use a lot of different shaders this can be a performance bottleneck.
In the portable and secure environment that the web is, how can such a
hardware-dependent problem be addressed? The application cannot provide its own
cache, but could it have control over the browser’s or driver’s shader cache?

Another example (that I’m not so familiar with myself but I know exists and is a key
portability point for mobile devices): some low-energy portable devices (e.g.,
smartphones) use tiled rendering to limit the need for memory bandwidth, how can
this specificity be taken care of from WebGPU? Can we get to know about the
presence of such constraint? Or is it too much information for the web to leak? There
is always a tension between privacy and performance.

For more cases of core question points, kvark’s “webgpu-debate” pages are a very
interesting source of information: https://kvark.github.io/webgpu-debate

https://github.com/ARM-software/vulkan_best_practice_for_mobile_developers/blob/master/samples/performance/render_subpasses/render_subpasses_tutorial.md
https://kvark.github.io/webgpu-debate
https://kvark.github.io/webgpu-debate

Extension mechanism

93

Is WebGPU ready enough?

“I want feature X but it is not in WebGPU!”

 Forget about the Web target then.

Generic extension mechanism: nextInChain

ShaderModuleGLSLDescriptor glslDesc; // in wgpu.h
glslDesc.chain.next = nullptr;
glslDesc.chain.sType = SType::ShaderModuleWGSLDescriptor;
glslDesc.code = glslSource.c_str();

ShaderModuleDescriptor shaderDesc;
shaderDesc.nextInChain = &glslDesc.chain;
// [...]

Extension for GLSL shaders

You need something but it is not in WebGPU? If your feature is not in WebGPU, it
may be available in one browser or another as an extension, or not available at all on
the web but available on desktop (e.g., GLSL shaders, timestamp queries).

The mechanism is always the same: a WGPU “SType“ is defined as well as an enum
key for it. The nextInChain pointer points to such a struct and the sType field tells
how to interpret the pointer.

Extension mechanism

94

Is WebGPU ready enough?

“I want feature X but it is not in WebGPU!”

 Forget about the Web target then.

Generic extension mechanism: nextInChain

Custom extensions?
Must support all low-level APIs

Backend-specific

(I did not try it)

I haven’t tried myself yet, but one could use this mechanism to add custom
extensions by themselves in theory (needs to implement it for all backends, or to
advertise correctly in adapter’s capabilities whether the extension is available or not).
Could be used for vendor specific extensions (e.g., RTX RayTracing kernels, DLSS,
etc.) although idk how handy it is currently to integrate this into either wgpu or Dawn
backend.

Conclusion

95

Should I use WebGPU

96

Conclusion

Yes.

- Domain agnostic modern API
(Not too low level, but enable efficient code paths)

- Future oriented
(Likely to become the most used graphics API eventually)

- Unfinished, but very active development
(Two concurrent implementations)

- You get a web-ready code base for free

In conclusion, here are all the reasons why I myself decided to start switching to
WebGPU for my prototypes:
 1. It is a nice API, so I did not have to force myself into switching
 2. I am now convinced it will become the standard API for graphics programming
even for desktop applications, so I don’t feel I am wasting the investment
 3. The developers are very responsive, it’s exciting to follow and you get quick
answer when you stumble upon issues, there are active communities.
 4. You get to run your application on the web even if it was not your goal! For
me it is a real difference, because the Web is a “nice to have” but not a strict
requirement, so WebGPU will naturally bring more applications to the web, application
that would have not invested in it before. (Of course as of now it still requires special
dev flags to run WebGPU in the browser though.)

Not just for 3D stuff

WebGPU for AI: https://mlc.ai/web-stable-diffusion

97

Conclusion

Just to cite one concrete example of a trendy non-3D related use of GPU
programming: Artificial Intelligence (as we call it)! (Continuous) machine learning is
all about big matrix/vector products under the hood, which GPUs excel at doing.

https://mlc.ai/web-stable-diffusion/

Going further

98

Conclusion

https://eliemichel.github.io/LearnWebGPU

https://matrix.to/#/#Wgpu:matrix.org

https://matrix.to/#/#WebGPU:matrix.org

Help around the LearnWebGPU C++ Guide:
https://discord.gg/2Tar4Kt564

Other communities:

I hope you enjoyed this presentation, again for more operational details I invite you to
read my WebGPU C++ programming guide. It is still a work in progress, but can
lead you already to having a simple 3D rendering pipeline up and working, and the
very base of compute shaders. More to come there, I am excited about continuing this
project and providing a clear documentation for WebGPU! Feel free to also give
feedback through the guide’s feedback bake.

You can join the support Discord server I’ve open to go with the guide, and of course
join wgpu and Dawn online chat on Matrix!

Contact me either there or at emichel@adobe.com

https://eliemichel.github.io/LearnWebGPU
https://discord.gg/2Tar4Kt564

99

End of slideshow

