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Fig. 1. Our method enables the direct manipulation of procedural implicit surfaces through mouse strokes in the viewport. We estimate an update of the
procedural parameters of the implicit surface that matches the user intent thanks to the auto-differentiation of an augmented version of the implicit function
(Section 4.2). As opposed to the typical workflow of updating parameters through sliders, our method enables a more direct and intuitive editing process.

Procedural implicit surfaces are a popular representation for shape modeling.
They provide a simple framework for complex geometric operations such
as Booleans, blending and deformations. However, their editability remains
a challenging task: as the definition of the shape is purely implicit, direct
manipulation of the shape cannot be performed. Thus, parameters of the
model are often exposed through abstract sliders, which have to be non-
trivially created by the user and understood by others for each individual
model to modify. Further, each of these sliders needs to be set one by one to
achieve the desired appearance. To circumvent this laborious process while
preserving editability, we propose to directly manipulate the implicit surface
in the viewport. We let the user naturally interact with the output shape,
leveraging points on a co-parameterization we design specifically for implicit
surfaces, to guide the parameter updates and reach the desired appearance
faster. We leverage our automatic differentiation of the procedural implicit
surface to propagate interactions made by the user in the viewport to the
shape parameters themselves. We further design a solver that uses such
information to guide an intuitive and smooth user workflow.We demonstrate
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different editing processes across multiple implicit shapes and parameters
that would be tedious by tuning sliders.
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1 INTRODUCTION
When creating virtual worlds and prototypes, authoring 3D assets
is crucial. In particular, procedural modeling has gained significant
traction in the industry in the past decade, relying heavily on im-
plicit surfaces [Mag 2022; Wom 2022; Jeremias and Quilez 2014] –
defined as the zero level set of a function. This representation is
particularly interesting as it allows for hierarchical combinations
of various functions representing primitives (e.g. spheres or boxes)
and operators (e.g. Boolean operations, affine transformations or
deformations) in a tree or a graph [Reiner et al. 2011; Wyvill et al.
1999]. Each of these operators and primitives comes with its own set
of procedural parameters, which can typically be adjusted through
sliders for non-destructive authoring. However, editing the shape by
adjusting individual sliders requires a comprehensive understanding
of its parameterization, as multiple parts can be affected by a single
procedural parameter. Conversely, editing one part of a shape may
require modifications of several interdependent procedural param-
eters. To be able to circumvent this tedious process, we propose a
direct manipulation approach to editing. This approach allows users
to directly interact with the end surface in the viewport and prop-
agating the changes to the relevant procedural parameters. While
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this kind of technique saw recent success for mesh-based paramet-
ric modeling [Cascaval et al. 2022; Gaillard et al. 2022; Michel and
Boubekeur 2021], none of these approaches can be readily applied to
implicit surfaces. Tracking of explicit points on the surface during
manipulations cannot be achieved easily in implicit surfaces due to
the lack of surface parameterization.
Our method allows the user to perform edits by simply select-

ing and dragging any desired parts on the implicit shape over the
3D viewport. It optionally enables expressing constraints on other
patches to remain unchanged throughout the edit, thus increasing
expressiveness. We automatically update the procedural parameters
of the implicit surface to modify the shape to best match the user
manipulation. However, to enable manipulation of a procedural
shape we need to be able to characterize an element of surface in a
way that is robust to changes in the procedural parameters. As this
is not trivially defined for implicit surfaces, we extend Michel and
Boubekeur [2021]’s framework of co-parameterization, enabling the
definition of a point’s location and its Jacobian with respect to the
shape parameters. We adapt this framework to implicit surfaces and
show how it can be used for direct manipulation purposes. We fur-
ther refine the parameter update through a new solver that exploits
the Jacobian computed in an automatic differentiation fashion. We
compute the Jacobian for multiple groups of points, each of which
represents a patch of the implicit surface. Our framework supports
the direct manipulation of procedural parameters for classical im-
plicit primitives combined with complex operators such as smooth
Boolean, deformations and affine transformations (Figure 1).

Contributions. We enable in-viewport editing of procedural im-
plicit surfaces thanks to the following contributions:
• A mapping between point positions and unique identifiers
for procedural implicit surfaces, allowing the proper tracking
of a point during an edit.
• A solver that, given user mouse-strokes and multi-point con-
straints, interactively updates the values of dozens of proce-
dural parameters to best match the user intent.
• A mean to evaluate the local influence of parameters on in-
dividual points of a shape, which could be applied in other
optimization pipelines than direct manipulation.

We evaluate our method in terms of editing capacity (e.g. can we
reach a desired shape) through a user study and a comparison to ex-
isting direct manipulation techniques for analytic implicit surfaces.

2 RELATED WORK
Previous research in the field of direct shape manipulation has
tackled either the editing of procedural shapes or the editing of
implicit surfaces, as reported below. Our work focuses on the overlap
between the two, aiming at directly controlling procedural shapes
defined as implicit surfaces. As our contribution is established in
the context of procedural shape modeling, we only briefly discuss
discrete implicit representations (that are not parametric), and focus
more specifically on procedural implicit surfaces.

Editing procedural shapes. Directly from screen-space user edits is
an active research topic applied for instance to 2D graphics (vector
patterns [Riso and Pellacini 2023]), simple joint structures (inverse
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Fig. 2. Our input is a procedural implicit shape represented by a scene
graph (left), combining primitives, transformations, Boolean operations, etc.
Procedurally-defined shapes allow users to create a large variety of instances
Φ(𝜽 ) by tweaking the procedural parameters 𝜽 (right), but this is a non-
trivial task as the user must understand the influence of each individual
parameter over the model. In each figure of the paper, bidirectional arrows
are used as a simplified semantical representation of procedural parameters.

kinematic [Anjyo and Lewis 2010; Aristidou et al. 2018; Boulic and
Mas 1996]), structured 3D shapes encoded as meshes [Bokeloh et al.
2011, 2012], or more general procedural surfaces which are the focus
of our work. In the case of procedural 3D meshes, a few papers close
to our work proposed techniques that allow in-viewport editing.
The pioneer work from Gleicher [1994] investigated graphical in-
terfaces for the direct manipulation of 3D shapes. More recently,
Michel and Boubekeur [2021] presented a method to directly modify
parametric meshes defined by acyclic graphs (DAGs). Gaillard et al.
[2022] introduced an auto-differentiable hierarchical representation
of the 3D scene to allow interactive control of procedural models
defined by node graphs. Finally, Cascaval et al. [2022] proposed a
bidirectional editing interface allowing users to interact with CAD
models both by applying changes to the underlying program repre-
sentation, or by directly manipulating it. A key limitation of the two
latter methods is that they respectively rely on bounding boxes and
mesh representations, and thus do not support operations that result
in topological changes. Yet, in the context of parametric implicit
surfaces, the assumption that no change of topologies can occur is
impracticable as Constructive Solid Geometry (CSG) operations are
widely used to construct complex models. As all these methods rely
on the parametrization provided by meshes, they cannot be directly
applied to implicits because they have no way to track the evolution
of a point on the shape after a change in the procedural param-
eters. To solve this and enable in-viewport editing of procedural
implicit surfaces, we define a bijective mapping between procedural
parameters and points on the implicit surface.

Editing implicit surfaces. On top of providing control over affine
transformations through 3D Gizmos in modeling software [Mag
2022; Wom 2022], previous research on implicit modeling has fo-
cused on providing indirect and direct control to the user. The work
from Schmidt et al. [2006] shows an interactive modeling applica-
tion where the user sketches 2D contours that are interpreted as
new primitives in a BlobTree model [Wyvill et al. 1999], which can
then be combined with CSG operators to create complex shapes.
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Fig. 3. Starting from a scene graph representation of an implicit surface (a), we augment it so that the resulting implicit function 𝑓 computes both the scalar
value 𝑠 and a co-parameter 𝒄 that identifies the evaluation point in space (b). We do this by replacing the eval, pre, post functions of the different nodes.
This allows estimating the derivative of a position with respect to the procedural parameters, which is then used to modify them to match the user stroke (c).

Despite the system’s expressiveness, editing of the parameters is
still done indirectly through manual tuning of sliders. Limited to
affine transformations, the work of Barbier et al. [2005] shows how
to animate a BlobTree model by defining the procedural parame-
ters values as a function of time. Warp curves [Sugihara et al. 2008,
2010] are another alternative for editing implicit surfaces in which
the user draws and manipulates polylines which locally deform
the implicit surface using variational warping. Modifications are
however limited to space-deformations, which are computationally
intensive, and are not propagated back to the procedural param-
eters of the shape. Direct manipulation of implicit surfaces have
been investigated for blending operators, with new ones that either
improve topological control through new parameters [Zanni et al.
2015], or that match a 2D drawing of the intended blending behavior
[Angles et al. 2017]. Research has also been conducted on the edit-
ing of discrete implicit surfaces encoded as level sets [Museth et al.
2002]. Users may perform direct manipulation operations such as
surface smoothing and offsetting using predefined building blocks
that modify the stored values of the implicit surface. Preservation of
surface details prior to modifications may be done by using particle
systems distributed on the surface [Eyiyurekli and Breen 2017], and
displaced after modification to retain the details. However, objects
in this case are not parametric, and thus the proposed solutions do
not easily transpose to the editing of procedural implicit surfaces,
which is the subject of our work. Closer to our work is the method
exposed in libfive [Keeter 2019], a library for implicit modeling that
provides some surface manipulation capabilities. The key difference
is that it only allows the user to specify where there must be some
element of surface, not to specify which element exactly. In practice,
this limits the user to only inflation and translation operations. Our
method is more general; it provides a direct manipulation frame-
work for analytic implicit surfaces that handle more operators, such
as affine transformation and complex warping such as twisting.

3 OVERVIEW
We aim at providing direct manipulation tools for procedural im-
plicit surfaces where users interact with the shape itself directly in
the viewport, rather than indirectly setting a value by moving an
indicator on a track bar, namely a slider, as in traditional procedural
modeling. Formally, a user edit consists in the selection of multiple
points p𝑖 over the surface, and their expected screen space move-
ment Δ𝑇𝑖 . Typically, Δ𝑇𝑖 matches the movement of the user mouse

cursor, actively expressing an edit to be matched. Occasionally, it
could also be equal to zero, meaning that the element should not
move during the edit, thus representing a constraint. The goal of our
solver is to update the shape according to this edit while maintain-
ing its global consistency. Our pipeline handles procedural implicit
shapes described by scene graphs, as detailed in the next paragraph.

Background. An implicit surface is defined as the zero level set
of a function 𝑓 : R3 → R. A point p ∈ R3 belongs to the implicit
surface 𝑆 if and only if it satisfies 𝑓 (p) = 0. Representing 3D shapes
using implicit surfaces thus inherits from interesting properties of
function objects, like their compact analytical representation or the
possibility to compose them together. A procedural implicit surface
is a generalization of an implicit function 𝑓 with a second argument
from a procedural parameters space Θ ⊂ R𝑛 , where 𝑛 is the number
of procedural parameters. These parameters, commonly used in
general procedural modeling, are exposed by the designer of the
initial shape to its end user. The surface 𝑆 for a particular value
𝜽 ∈ Θ is called an instance of the procedural shape Φ:

𝑆 = Φ(𝜽 ) = {p ∈ R3 | 𝑓 (p, 𝜽 ) = 0} (1)

We support procedural implicit functions that are derived from a
scene graph, like for instance BlobTrees [Wyvill et al. 1999] or ana-
lytical Signed Distance Fields. A scene graph is a directed acyclic
graph (or sometimes more simply a tree) whose nodes are either
primitives such as spheres or boxes, or operators such as CSG op-
erators or affine transformations (see Figure 2). Complex implicit
shapes arise from the combination of primitives via multiple boolean
operators such as union, intersection of difference. In the implicit
domain, a blended variation of regular boolean operations called
smooth boolean is greatly exploited to create more organic shapes.
A formal derivation of the implicit function 𝑓 from the scene graph
is described is Section 3.

Problem setting. In our context, a manipulation of the procedural
implicit surface means a change of the procedural parameters 𝜽
through user interaction. This ensures that the deformed surface
globally remains a valid instance of the procedural shape Φ. To
comply with the user input, we minimize for each manipulated
point the following loss:

L𝑖 :=
1
2
Δ Proj

(
p𝑖
)
− Δ𝑇𝑖

2
2 (2)
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where Δ Proj
(
p
)
= Proj

(
p𝜽+Δ𝜽

)
− Proj

(
p𝜽

)
is the effective move-

ment of the point p after an update Δ𝜽 of the procedural parameters,
projected by Proj onto the screen. The first problem we address, in
Section 4, is the definition of the new position p𝜽+Δ𝜽 of the dragged
point. Indeed, while the initial position p𝜃 is simply found by cast-
ing a ray onto the surface, tracking what is semantically the same
element of geometry after the change of procedural parameters is
challenging. We then derive in Section 5 the gradient of L𝑖 , and in
particular the Jacobian matrix of each dragged position p𝜽+Δ𝜽

𝑖
with

respect to Δ𝜽 . Lastly, Section 6 details our gradient descent based
solver. Our complete pipeline is summarized in Figure 3.

Scene Graph Model. In a typical scene graph used for implicit
modeling, an oriented edge is used in two ways: from the root to the
leaves, it carries a position p at which primitives must be evaluated,
then from the leaves back to the root, it carries the returned scalar
value 𝑠 . We formalize this by having each primitive provide an eval
function, which maps a position p ∈ R3 to a scalar value 𝑠 ∈ R,
and each operator that has𝑚 input provide a function pre : R3 →
(R3)𝑚 that prepares the𝑚 positions fed to its inputs and a function
post : R𝑚 → R that reduces the𝑚 values returned by the inputs.
For instance, the eval function of a sphere primitive of radius 𝑟 is
eval : p ↦→ ∥p∥ − 𝑟 and here are examples of operators:

Scaling by a factor 𝑥 Union of 2 shapes
pre : p ↦→ p/𝑥 pre : p ↦→ (p, p)
post : 𝑠 ↦→ 𝑠 · 𝑥 post : (𝑠1, 𝑠2) ↦→ min(𝑠1, 𝑠2)

The final expression of 𝑓 is obtained by recursively chaining the
pre, eval and post expressions as detailed in Algorithm 1. The free
variables of the expression – e.g. the scale factor 𝑥 or the radius
𝑟 in the examples above – constitute the vector 𝜽 of procedural
parameters. In practice there is usually a remapping between the
parameters that are publicly exposed to the end user and the low-
level parameters of the graph nodes, but we consider without loss
of generality that this is part of the eval, pre and post functions.
We assume the resulting function 𝑓 to be continuous and differ-

entiable around its zero level-set. In order to render shapes using
sphere tracing [Hart 1996], we also assume that 𝑓 is Lipschitz, ie. that
there is a bound 𝜆 on the magnitude of ∇𝑓 , ensuring that |𝑓 (p, 𝜽 ) |/𝜆
is always lower than the distance from p to the surface. This in turn
allows to compute points on the surface using sphere tracing for
direct manipulation purposes.

ALGORITHM 1: Derivation of the implicit function from a
scene graph. The expression of the implicit function 𝑓 is derived
from a scene graph by recursively compiling its root node into the
expression of an evaluation function R3 ↦→ R.

Input: A node 𝑛 of the scene graph.
Output: The implicit function represented by the node 𝑛.
function CompileNode(𝑛):

if IsPrimitive(𝑛)
return 𝑛.eval;

else
children← GetChildren(𝑛);
return 𝑛.post ◦ map(CompileNode, children) ◦ 𝑛.pre;

Co-parameterization space

3D space

Fig. 4. Co-parameterization enables the identification of the same point
location before and after an edit. The two points p and p′, selected in
different shape instances Φ(𝜽 ) and Φ(𝜽 ′ ) , have two different locations in
R3, but are mapped to the same co-parameter 𝒄 ∈ C because they represent
the same semantic element of the shape. This enables to define the influence
𝜕p
𝜕𝜽 of the procedural parameters at a given point p.

4 COPARAMETERIZATION
To enable direct manipulation, we need to robustly identify the same
point location throughout the edit as it allows us to estimate the
local influence of the procedural parameters. We formalize p𝜽+Δ𝜽
as the position of a point p after an update 𝜃 + Δ𝜃 of the procedural
parameters (Section 4.1), and describe how to use the structure of the
scene graph to track the identity of manipulated points (Section 4.2).

4.1 Definition
The sole expression of the implicit function 𝑓 cannot provide the
position p𝜽+Δ𝜽 of a dragged point for an arbitrary change Δ𝜽 of
the procedural parameters, because in its compiled form it lacks
the semantic awareness of the original scene graph. We propose
to define an augmented implicit function 𝑓 : (p, 𝜽 ) ↦→ (𝑠, 𝒄) that
not only returns the scalar value 𝑠 ∈ R but also a feature vector
𝒄 ∈ C meant to uniquely identify what role the position p plays
in the instance Φ(𝜽 ). This so-called co-parameter 𝒄 formally char-
acterizes the notion of same point in a non-ambiguous way, while
maintaining robustness to procedural parameters changes. More
formally, 𝑓 (p, 𝜽 ) = 𝑓 (p′, 𝜽 ′) if and only if p and p′ are two posi-
tions of the same element of geometry under different procedural
parameters 𝜽 and 𝜽 ′ (Figure 4). Hence p𝜽+Δ𝜽 is defined as the only
point such that 𝑓 (p𝜽+Δ𝜽 , 𝜽 + Δ𝜽 ) = 𝑓 (p𝜽 , 𝜽 ). Note that 𝑠 is always
0 for surface points, so 𝒄 is what enforces point identity.

Our co-parameter space C = R3 × N is detailed in Section 4.2, as
well as how we build 𝑓 in practice. Note that contrary to Michel and
Boubekeur [2021], we define the co-parameterization on the whole
space rather than only on the surface, due to the implicit nature of
our shapes.

4.2 Augmented Implicit Function
The scene graph from which our implicit function is derived car-
ries semantic information that also suggests a notion of what same
point means. This section describes how we modify the construc-
tion of the implicit function to encode this extra information as
a co-parameterization that we can then use in our solver. Our re-
quirements for the definition of the co-parameterization are (a) to
uniquely and robustly identify elements of geometry (b) to be locally
differentiable (Section 5) and (c) to be automatically constructed
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Fig. 5. The implicit function 𝑓 and the augmented implicit function 𝑓 can be derived from the scene graph (a) via a compilation process. While the former (b)
only provides the distance output for each position p it is queried on, the latter (c) augments such information with a co-parameter 𝒄 = (𝒂, 𝑝𝑖𝑑 ) .

Table 1. Implicit Function 𝑓 and its augmented counterpart 𝑓 compiled from the scene graph in Figure 5. The latter defines a new output type that carries
both the distance and the co-parameters that is computed and propagated by the augmented functions. The second row shows the exact implementation of
the sphereEval() function in both scenarios, highlighting the co-parameter computation (right). The remaining function implementation is reported in
supplemental file augmented_eval_pre_post.glsl.

(b) Implicit Function 𝑓 (c) Augmented Implicit Function 𝑓

f l o a t f ( i n vec3 pos , f l o a t [ 5 ] params ) {
/ / s c a l e = params [ 0 ] and so on

vec3 [ 2 ] p o s i t i o n s = unionPre ( pos ) ;
vec2 s c a l e dPo s = s c a l e P r e ( p o s i t i o n s [ 0 ] , s c a l e ) ;

f l o a t sphe re = sphe r eEva l ( s c a l edPo s , r a d i u s ) ;
f l o a t box = boxEva l ( p o s i t i o n s [ 1 ] , dims ) ;

f l o a t s c a l e d Sph e r e = s c a l e P o s t ( sphere , s c a l e ) ;
r e t u r n un ionPos t ( s c a l e dSphe r e , box ) ;

}

s t r u c t AugmOutput {
f l o a t s d f ;
vec4 coparam ;

} ;

AugmOutput augmentedF ( in vec3 pos , f l o a t [ 5 ] params ) {
/ / s c a l e = params [ 0 ] and so on

vec3 [ 2 ] p o s i t i o n s = unionPre ( pos ) ;
vec2 s c a l e dPo s = s c a l e P r e ( p o s i t i o n s [ 0 ] , s c a l e ) ;

AugmOutput sphe re = sphe r eEva l ( s c a l edPo s , r a d i u s ) ;
AugmOutput box = boxEva l ( p o s i t i o n s [ 1 ] , dims ) ;

AugmOutput s c a l e d Sph e r e = s c a l e P o s t ( sphere , s c a l e ) ;
r e t u r n un ionPos t ( s c a l e dSphe r e , box ) ;

}

f l o a t s phe r eEva l ( i n vec3 pos , f l o a t r a d i u s ) {
f l o a t s d f = l eng t h ( pos ) − r a d i u s ;
r e t u r n s d f ;

}

AugmOutput sphe r eEva l ( i n vec3 pos , f l o a t r a d i u s ) {
f l o a t s d f = l eng t h ( pos ) − r a d i u s ;
vec4 coparam = vec4 ( pos / r ad iu s , 0 . 0 ) ;
r e t u r n AugmOutput ( sd f , coparam ) ;

}
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for all of our 3D implicit shapes. To ensure this last point, we build
the co-parameterization together with the implicit function 𝑓 , by
defining an augmented version of the eval, pre and post functions
we described in Section 3:

eval : R3 −→ R × C
pre : R3 −→

(
R3)𝑚 (Unchanged)

post :
(
R × C

)𝑚 −→ R × C
We provide these augmented functions only once for each type of
primitive and operator. Algorithm 1 remains the same, but now
defines an augmented implicit function 𝑓 : (p, 𝜽 ) ↦→ (𝑠, 𝒄) that
returns both the scalar value 𝑠 ∈ R and the co-parameter 𝒄 ∈ C
at the evaluated position. The co-parameter 𝒄 = (𝒂, 𝑝𝑖𝑑) is made
of a differentiable part 𝒂 ∈ R3 and a path index part 𝑝𝑖𝑑 ∈ N that
uniquely identifies the path followed in the scene graph during
the evaluation of a point. The following paragraphs describe rules
of thumb for defining the augmented version of eval and post.
Additional material lists formulas for the 29 node types that we
support in practice.

Primitive nodes. These represent atomic shapes, and are often
derived from a fixed canonical shape that is only rigidly transformed
by the procedural parameters (e.g., ellipsoid, prism, cylinder, etc.). In
this case, we use the position of a point p in this canonical space as its
unique identifier 𝒂, and the path index 𝑝𝑖𝑑 is always 0 for a primitive.
This idea can be generalized to other shapes as illustrated in the
additional material, sometimes at the cost of a local discontinuity
(e.g., we parameterize the torus as a bent cylinder). While these
primitives represent basic shapes, our framework enables highly
complex shape design through operator nodes, allowing for vast
combination of primitives, as it is typically done in implicit modeling
[Wyvill et al. 1999].

Operators nodes. Operator nodes forward the co-parameter re-
ceived from their input while evaluating a given point position p.
While for 1-input operators (e.g., rotation, scaling, bending) the
single input co-parameter is simply passed to the next node, in a
2-input operator (e.g., boolean and smooth boolean operations) only
a single co-parameter is forwarded alongside the actual operator
output. In general operators may introduce ambiguity in the co-
parameterization in two ways: by combining multiple inputs, and
by duplicating geometry. Both potentially lead to multiple points
sharing the same co-parameter, which we avoid by adding the inte-
ger part 𝑝𝑖𝑑 of the co-parameterization. A 2-input operator offsets
the path index 𝑝𝑖𝑑 that it receives from its second input by 1+ the
maximum 𝑝𝑖𝑑 it may receive from its first input. Its output 𝑝𝑖𝑑 is
forwarded from either of its inputs depending on its behavior (see
proof in additional material). Operators with more than 2 inputs are
decomposed into sub steps, and duplication operators are treated
as chains of 2-input unions. This allows us to manipulate many
different implicit operators (including Boolean and smooth Boolean
operators, affine transformations, and warping). In case manipu-
lation occurs at the intersection of two shapes, the co-parameter
propagation scheme does not prevent the user from editing smooth
Boolean operator parameters (like the smoothness factor, as illus-
trated in the accompanying video), even with the propagation of

a single co-parameter from the inputs. In fact, this is mitigated by
the sampling of multiple points in the neighbouring patch of the
surface, having some of them falling in each primitive. We discuss
in Section 7 more challenging operators that we do not support.
Note that the integer part 𝑝𝑖𝑑 is ignored when differentiating the
co-parameter, but is used in the solver to control that the dragged
point is properly tracked (see Section 6).

Scene graph compilation example. Starting from a scene graph
representation, we derive the corresponding implicit function by
recursively concatenating the pre, eval and post functions of each
node, starting from the root one. This is illustrated in Algorithm 1.
The same procedure is adopted to obtain the augmented function 𝑓 ,
using the augmented counterparts of the functions. In this section,
we detail step by step a full example of compilation from the input
scene graph down to the implicit and augmented implicit functions
for the example scene graph shown in Figure 5.
The scene from Figure 5 is made up of 2 primitives, namely the

Sphere and the Box; the former is transformed using the unary oper-
ator Scale and finally combined with the latter via the binary Union
operator to create the final shape. By recursively following Algo-
rithm 1, we start from the Union node and apply the CompileNode
function to its children, which are the Box primitive and modifier
Scale, that can be further unrolled until the base case Sphere is
reached. The implicit function 𝑓 : R3 × Θ → R derived from the
scene graph is reported in the first column of Table 1.
While the function 𝑓 only evaluates the distance of a point in

space from the implicit shape, we need additional information to al-
low the direct manipulation of the implicit shape itself. We apply the
same Algorithm 1 but replace each node’s function with their aug-
mented version pre, eval and post, thus computing and propagat-
ing both the distance and the co-parameter for each evaluated posi-
tion. The derived augmented implicit function 𝑓 : R3×Θ→ (R×C)
is reported in the second column of Table 1.

Exploiting the information propagated by the augmented output
makes it possible to track the same point during an edit, and allows
estimating the influence of the procedural parameters over them.

5 EVALUATION AND NORMALIZATION
The computation of Jacobians with respect to procedural parameters
is a core step in the optimization process. Here we define how to
compute and refine them accordingly to the user selection (Figure 7).

5.1 Jacobian Evaluation
Minimizing the direct manipulation lossL𝑖 from Equation 2 requires
to evaluate at p𝜽+Δ𝜽

𝑖
the Jacobian 𝜕p

𝜕𝜽 of the position p of a point
with respect to procedural parameters 𝜽 , at a fixed point identity 𝒄 ,
as described in Sec. 6. For each position p of a point, the Jacobian
is a 3 × 𝑛 matrix, where 𝑛 is the number of procedural parameters.
Fortunately, this matrix can be derived from the Jacobian of 𝑓 :
(p, 𝜽 ) ↦→ (𝑠, 𝒄) by applying the implicit function theorem:

𝜕p
𝜕𝜽

= −
(
𝜕𝑓

𝜕p

)+
· 𝜕𝑓
𝜕𝜽

(3)
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Height
Width

Door rotation

Constrained 
points

Fig. 6. To reduce ambiguities during an edit, our framework enables multi-
point constraints over parts of the shape. This guides the optimization
towards a procedural parameter update that does not affect the constrained
areas, thus increasing the framework expressiveness.

where (·)+ denotes the pseudo-inverse of a matrix.We use automatic
differentiation to evaluate the Jacobian of all outputs of 𝑓 with
respect to both the procedural parameters 𝜽 and the position p.

However, simply evaluating the point-wise Jacobian of our proce-
dural shape has two major drawbacks that we need to address: first,
the different columns of the Jacobian – which relate to different
procedural parameters – are not homogeneous in terms of scales and
units. For this, we perform a normalization step that we detail in
Section 5.2. Second, the differential information is only valid for
a single point. When selecting a patch of the surface where many
points are involved, each of them may be influenced by different
procedural parameters. This may result in the simultaneous update
of several different parameters, ending in a less controllable interac-
tion as the user performs the edit. There is thus a need for a filtering
step where we zero the values that relates to procedural parameters
that we do not aim to modify (Section 5.3).

5.2 Jacobian Normalization
Switching e.g., a length parameter from meters to millimeters di-
vides by a factor 1000 the corresponding columns of the Jacobian
𝜕p
𝜕𝜽 and thus leads to gradient descent updates 1000 times slower
only for this parameter. To prevent this, we estimate a normaliza-
tion factor for each procedural parameter of the model. First, as a
preprocessing step, we randomly sample 50 ray directions from the
six viewpoints aligned with the canonical axes and evaluate the Ja-
cobian 𝜕p

𝜕𝜽 at each intersection between a traced ray and the implicit
shape. The normalization factor𝑚𝑖 of the 𝑖-th procedural parameter
is then defined as the maximum magnitude of the 𝑖-th column of
the Jacobian over all samples. During editing, we similarly update
the normalization factors𝑚𝑖 after each user edit and each change
of viewpoint. Normalization factors are exploited in the Jacobian
filtering process (Section 5.3), enabling a direct and robust compari-
son between parameters, and are also used to scale the gradient of
the loss function ∇L during the optimization (Section 6).

5.3 Jacobian Reduction and Filtering
To increase the robustness of the Jacobian, we estimate it for a neigh-
boring patch of surface rather than at a single point. We evaluate

(b) Without Filtering (c) With Filtering

Height change

Fig. 7. We automatically filter out some columns of the Jacobian matrix to
deactivate procedural parameters that are deemed less relevant to the edit.
Here, a selection on the side of the sofa suggests an edit involving the width
rather than the height or depth. Without filtering (b), all dimensions are
updated, resulting in undesirable changes in height and depth, while our
filtering discards the height and depth dimensions, focusing on width (c).

𝜕p
𝜕𝜽 at 16 sample points within a screen-space disk centered on the
user’s mouse cursor and reduce them to their average 3 × 𝑛 matrix.

We then filter this patch-wise Jacobian matrix, noted 𝐽 (p, 𝜽 ), by
cancelling out procedural parameters that do not influence enough
the position of the patch. The process of filtering the procedural
parameters does not require any input from the user, and is auto-
matically performed by extracting information from the Jacobian
matrices themselves. We filter the 𝑖-th column of the Jacobian by
estimating the influence of the 𝑖-th procedural parameter on the
geometry. To be preserved, each Jacobian column 𝒋𝑖 has to respect at
least two of the three following conditions. (a) Its normalized mag-
nitude ∥𝒋𝑖 ∥𝑚𝑖

must be higher than an empirical threshold 𝜆𝑚𝑎𝑔 = 0.35,
aiming to keep dimensions with large impact on the shape geome-
try. (b) The standard deviation of 𝒋𝑖 across all selected points must
be lower than an empirical threshold 𝜆𝑠𝑡𝑑 = 0.2, aiming to keep
dimensions that behaves similarly across the patch. (c) The angular
distance 𝑑𝑣 · 𝒋𝑖

∥𝒋𝑖 ∥
, where 𝑑𝑣 denotes the view direction, must be

lower than an empirical threshold 𝜆𝑣𝑖𝑒𝑤 = 0.4 to foster dimensions
whose impact is orthogonal to the view direction.

6 SOLVING
Thanks to the evaluation of the filtered and reduced Jacobian 𝐽 (p, 𝜽 )
of p with respect to 𝜽 , we can integrate the manipulated shape in
generic continuous optimization frameworks. At each frame of the
interaction, we use a few steps of gradient descent to minimize the
following multi-point manipulation loss:

L =
∑︁
𝑖

L𝑖 + 𝜆L𝑟𝑒𝑔 (4)

where L𝑟𝑒𝑔 = ∥Δ𝜽 ∥2 is a regularization term that prevents sudden
changes in procedural parameters and 𝜆 = 0.2. The gradient of L𝑖
with respect to Δ𝜽 is:

∇L𝑖 = 𝐽Proj · 𝐽 (p𝜽+Δ𝜽𝑖 , 𝜽 + Δ𝜽 ) (5)

When updating 𝜽 at each step of the gradient descent, we divide
coefficient-wise the gradient ∇L by the vector𝑚 of normalization
factors (Section 5.2). Since the surface is only implicit, the updated
positions p𝜽+Δ𝜽

𝑖
are estimated as part of the optimization (Equa-

tion 8), and the confidence of this estimation is measured by the
difference ∥Δ𝑐 ∥ = ∥Δ𝑎∥2 + 𝛿Δ𝑝𝑖𝑑,0 between the initial co-parameter
of p𝜽

𝑖
and the one evaluated at p𝜽+Δ𝜽

𝑖
. When this error exceeds a
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Smooth radius

Fig. 8. Smooth Booleans are key operators of implicit shape modeling, as
they blend shapes together in a more organic way than hard Booleans (left).
Our framework naturally supports updating the smoothness parameter, by
dragging a point from the smooth junction between the two shapes (right).

threshold 𝑒𝑐 = 0.7, we divide the gradient by ∥Δ𝑐 ∥ to slow down the
drift. The scaled gradient is then multiplied by the global learning
rate 𝜂. We then update the estimate p𝑖 of the 3D position p𝜽+Δ𝜽

𝑖
of

the dragged point:

Δ𝜽 := −𝜂∇L/𝑚 (6)
𝜽 ←− 𝜽 + Δ𝜽 (7)
p𝑖 ←− p𝑖 + 𝐽 (p𝑖 , 𝜽 ) · Δ𝜽 ∀𝑖 (8)

7 RESULTS
We implemented our method as well as our implicit primitives and
operators in C++/GLSL. We use libfive trees [Keeter 2019] as target
to the compilation of our scene graph representation (Algorithm 1),
which provides us with symbolic expression optimization and nu-
meric automatic differentiation. All models shown throughout this
paper (Figure 1, 6, 7, 10, 11) were rendered using sphere tracing
[Hart 1996] in a standalone application (see accompanying video).
Experiments were performed on a desktop computer equipped with
AMD® Ryzen 5 clocked at 3.6 GHz with 32 GB of RAM, and an
NVIDIA GTX 1050 graphics card. Statistics for the models shown
throughout this paper and performances for the different steps of
the pipeline are reported in Table 2.

Performance. As illustrated in the accompanying video, ourmethod
runs at interactive framerates (including manipulation and render-
ing), enabling direct manipulation by the user without the need to
wait for any sort of loading. The most computationally intensive
part is the solving (Table 2), where the maximum number of gra-
dient descent iterations is set to 50, which we found to be a good
trade off between quality and performance (see additional material
for further discussion). To achieve interactivity, we optimize the
expression of 𝑓 using libfive expression optimization feature at ini-
tialization. As a further improvement in speed, the Jacobians used
during solving are updated every 4 frames.

Control. We illustrate our direct manipulation tool on a set of 11
procedural implicit surfaces with varying complexity and topology.
Scene graph complexity spans from a minimum of 19 nodes (Fig-
ure 6) to 265 nodes for the roller model in Figure 1, with a number of
procedural parameters ranging from 4 to 45. Figure 11 shows editing
sessions with three successive edits to these models. A typical work-
flow in our framework involves fixing some parts of the implicit
surface while dragging some other parts, as highlighted in Figure 1,
6, and 11. On top of our Jacobian filtering (Section 5.3), this helps the

Table 2. Performance for the different scenes, with the amount #𝑛𝑜𝑑𝑒𝑠 of
nodes in the scene graph, the #𝜽 of procedural parameters and the #𝜽𝑒

changed during the edit. We report the execution time for the different
steps of an edit, namely the co-parameter sampling time 𝑡𝑐 , the Jacobian
evaluation time 𝑡 𝑗 and the average solving time 𝑡𝑠 for the 50 optimization
iterations. All timings are in ms.

Scene Fig. #𝜽 #𝜽𝑒 #𝑛𝑜𝑑𝑒𝑠 𝑡𝑐 𝑡 𝑗 𝑡𝑠

Roller 1 8 1 265 1.524 2.365 9.903
Cup 2 5 3 39 2.523 0.151 0.548
Fridge 6 3 1 19 2.325 0.214 0.381
Sofa 7 13 1 77 2.319 0.678 1.652
Webcam 10 5 1 206 1.628 0.935 3.503
Cheese 11a 27 2 158 1.897 1.932 3.145
Robot Arm 11b 6 1 243 2.061 0.732 2.831
Pipes 11c 6 2 249 1.559 1.510 4.152
Toaster 11d 4 1 256 1.904 1.126 4.811
House 11e 20 4 244 2.137 0.999 2.313
Rabbit 11f 45 5 188 1.484 3.980 5.928

solver disambiguate the procedural parameter update and allows for
more intuitive edits, even when warping and affine transformations
are involved. For instance, the House model combines a bend and a
twist, that can both be manipulated separately when the right fixed
constraints are provided. Another example is the Robot arm, which
involves chained rotations that can be controlled independently by
fixing points on the different joints.

Our framework is also resilient to changes in topology induced by
CSG operators (union, intersection, and difference). This represents
an important feature, since the ease with which one can create
varying topology is one of the key strengths of implicit modeling. So,
the manipulation of shapes whose topology varies when altering its
procedural parameters is supported by the presence of a unique path
index (𝑝𝑖𝑑) in the co-parameter that identifies the dragged points.
The support to topology changes is highlighted in Figure 9 as well
as by edits performed on the pipe and cheese models (Figure 11).

Comparison with other techniques. Our method is focused on the
direct manipulation of analytic implicit surfaces defined as pro-
cedural scene graphs. We support the classical operators of im-
plicit modeling, such as CSG operators that changes the topology
of the model, morphological operators (e.g., dilatation) and smooth
Booleans (see Figure 8), bringing the power of direct manipulation
techniques performed on meshes [Cascaval et al. 2022; Gaillard et al.
2022; Michel and Boubekeur 2021] to procedural implicit surfaces.

Close to our method is the direct manipulation solution exposed
in libfive [Keeter 2019], which allows manipulation of analytic im-
plicit surfaces. Their solver tries to find a procedural parameter
update such that some part of the surface passes by the new mouse
position, back-projected into the 3D space along the normal of the
base position on the model. However, it has no way to identify
which part of the shape the user intends to modify. Although lib-
five’s heuristic behaves well for procedural parameters that move
elements of surface along their normal, it struggles with tangential
movements, due to its lack of awareness of a point’s identity. In
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Eye x
Eye y

Offset
Radius

Fig. 9. Examples featuring changes of topology. Our method naturally in-
herits from the ability of procedural implicit surfaces to represent objects
of varying topology, be it through additive or subtractive, smooth or hard
Boolean operations.

contrast, our solution appropriately evaluates the local influence of
a procedural parameter in all directions equally.
Figure 10 shows two cases where libfive’s normal-aligned para-

digm fails in updating the procedural parameters while matching
the user edit. In top row example, the user manages to modify the
lens position of the camera using our approach, while using libfive’s
solver it only manages to increase the camera depth, which is in
fact aligned to the dragged point normal. Similarly in bottom row,
the vertical user edit is correctly mapped to a change in the opening
height using our method, while it is interpreted as a opening depth
update using libfive’s solver. A comparison of the behaviour of both
solvers on a sample 2D case is reported in the additional material.

User Study. We evaluated the effectiveness of our method via a
user study involving 20 subjects, with well-spread background in
3D editing programs. The majority of them confirmed they use 3D
editing programs from time to time, but we also recorded the activity
of real novice users up to proficient ones. A similar distribution can
be observed for users’ affinity with procedural modeling, with only
a few of them being total novices to the concept.

The user study starts with an hands-on session, where the users
could familiarize with both slider-based and direct manipulation
interactions tools. Then, a more comprehensive editing session of
five tasks is performed. Each task requires the user to reach a target
shape configuration shown, in a provided on-screen reference image.
Users are guided to reach the target using slider-only interaction in
the first task and direct manipulation for the remaining ones. Before
moving to the next task in the editing session, users are required
to provide feedback about their ability to reach the provided target.
After the complete editing session, they were also provided a more
detailed questionnaire.

Users found interacting with a direct manipulation tool quite easy,
overall being able to directly edit a desired parameter. Specifically,
it emerged that 95% (all but 1 subject) found the direct manipulation
tool to be reactive to their inputs, and the 55% assessed that they

Depth
Lens Position

(c) Result (libfive)(b) Result (ours)(a) Input stroke

Depth
Height

(b) Result (ours)(a) Input stroke (c) Result (libfive)

Fig. 10. When the user intends to drag points in a direction significantly
different than the local surface normal (a), our direct manipulation approach
keeps track of the dragged point (b)while libfive’s solver only constrains that
the overall surface passes by the new mouse position (c). In top example,
libfive is not able to affect the lens position parameter, while in bottom
example the opening depth and not the position is affected when solving
for the edit.

rarely or never find themselves preferring to use sliders over direct
manipulation.
Out of the 100 tests collectively performed by the users, they

admitted not being able to reach the target only eight times, and
this has often happened in the presence of models involving defor-
mations, as also reported by users in the final questionnaire. Some
of them admitted to having experienced frustration while interact-
ing with our tool, with the common cause being having multiple
parameters change at the same time, providing feedback like "It is
sometimes difficult to isolate the exact parameter you want to tune".
This may suggest more focus on the parameter reduction strategies,
which are already being considered for future exploration. They
reported to not be able to precisely locate the part of the model that
needed to be selected to perform a change in parameters, which
could be mitigated by visualizing more information directly on the
shape.

However, when compared to slider-based editing, the majority of
the users admitted to prefer direct manipulation to adjust parameter
values and, moreover, all subjects admitted they would interact
through direct manipulation if another scene was presented. All
the subjects regularly using 3D editing programs confirmed that
they would frequently use a direct manipulation tool if integrated
in their favorite program. Further details regarding the user study
setting and the questionnaire answers are reported in the additional
materials.

Limitations and Future Work. Our method allows the direct ma-
nipulation of analytic implicit surfaces, but does not come without
limitations. First, an explicit co-parameter must be derived for prim-
itives and operators that we aim at editing, which may not be trivial.
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Moreover, co-parameterization must remain injective, which is not
fulfilled in some edge cases, e.g., when the size of a box becomes 0.
In this case, multiple points end up at the same position.
While our framework supports many different primitives and

operators (see supplemental material for the derivation of all nodes),
some remain to be integrated. For instance, we do not support do-
main repetition operators, which requires to discriminate points
belonging to different instances by producing a different 𝑝𝑖𝑑 for
each one. Another example of unsupported operator is morph be-
tween two shaped. Although co-parameter is coherently defined for
each shape, our definition does not ensure consistent interpolation.
This may end in the morphing operator leading to an unintuitive
manipulation (see supplemental for an example).

Second limitation is related to the different nature of procedural
parameters user while modeling. Regarding discrete procedural pa-
rameters, our system could support the ones that can be defined
as rounded versions of underlying continuous ones (e.g., the rep-
etition of a shape in a radial or axis-aligned arrangement, usually
described as a modulus operation between a position and a distance
parameter). Oppositely, a parameter that is fundamentally discrete,
e.g., a "primitive type" parameter that switches between two com-
pletely different primitives, is not supported as it is hard to even
qualitatively define what the user would expect while changing it.
We also found that our Jacobian filtering (Section 5.3) does not

perform as well for models with too many procedural parameters
influencing the same patch. This is partially solved by using multiple
fixed constraints for editing, but future work may investigate more
advanced filtering and reduction strategies, as also suggested by the
results of our user study. Finally, our current gradient descent opti-
mization (Section 6) could benefit from more advanced techniques,
such as ADAM optimization, or even Natural Gradient Descent as
our total number of parameters remains small.

8 CONCLUSION
In this work, we proposed a direct manipulation approach for pro-
cedural implicit surfaces. We automatically augment the implicit
function to output a co-parameter, allowing to robustly track the
same point location throughout an edit. We leverage this to enable
users to directly drag parts of the shape in the viewport, as opposed
to tediously editing sliders, and more generally open the opportu-
nity to evaluate the local influence of each procedural parameter on
individual points of a shape. Our framework supports the direct ma-
nipulation of implicits made of a large set of primitives and complex
operators, including warping and affine transformations.
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Fig. 11. Editing sessions performed using our framework. The first image represents the original procedural implicit shape with a simplified semantical
representation of its procedural parameters. The remaining images show three consecutive edits that are performed on the implicit shape, including both
constrained and unconstrained manipulations. For each edit, we report the selected points and the mouse trajectory, highlighting the procedural parameter
update in the underlying sliders.
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