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Fig. 1. We enable the use of rest cages made of polynomial curves for Green cage-based deformation (a). Previous methods were limited to straight rest cages,
making it cumbersome to fit some rest shapes like the bird’s beak (b). Furthermore, we provide the derivatives of our coordinates so they can be used in
variational solvers. Note that Green coordinates foster locally-conformal regularity over strict interpolation of the cage transform.

We present closed-form expressions for Green and biharmonic coordinates

with respect to polynomial curved 2D cages, enabling reliable cage-based

image deformation both to and from a curved cage. We further provide

closed-form expressions for first- and second-order derivatives of these

coordinates with respect to the encoded position. This enables the use of

variational solvers for interacting with the 2D shape at arbitrary points

while keeping the fast decoding strength of cage-based deformation, which

we illustrate for a variety of elastic deformation energies.
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1 Introduction
Generalized barycentric coordinates can be used to define defor-

mation of points within a polygon of an image as the weighted

sum of deformed polygon corners. For non-triangular polygons, the

menu of generalized barycentric coordinate flavors is seemingly
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endless. Different varieties spanning trade-offs of smoothness, non-

negativity, locality, closed-formness. Generalized barycentric coor-

dinates have been deployed as cage-deformers in popular software

such as Krita and Blender. However, the vast majority of research in

generalized barycentric coordinates has limited its consideration to

rest polygons with straight edges mapped to similarly straight-edge

deformed polygons. Unfortunately, at deformation time this means

that regions near the cage edges deform linearly or otherwise reveal

the cage discretization: At binding time, a straight cage edges must

weave their way around the region of interest, often requiring many

segments to closely follow curved boundaries.

There has been some continual progress on methods which con-

sider curved deformed cages: Langer and Seidel [2008] convert any

coordinates into linear-blend skinning like weights which afford

derivative control at cage-vertices (i.e., allowing cage edges to bend).

The resulting weights are not coordinates in the usual sense; nei-

ther are, e.g., bounded biharmonic weights [Jacobson et al. 2011],

which similarly define skinning weights for cage-deformers with

tangent control at vertices. Beatson et al. [2018] extend Mean Value

Coordinates [Floater 2003] to control tangents along (straight) cage

edges. Manson and Schaefer [2010], [Smith and Schaefer 2015], and

Beatson et al. [2018] define or extend other coordinates to similarly

control tangents along deformed cage edges. Most recently, Michel

and Thiery [2023] extend Green Coordinates [Lipman et al. 2008] to

cages with polynomial (e.g., Bézier) cage-edges, but their derivations
assume that the rest cage edges are straight. Their seminal work has

since then inspired several works on the use of polynomial 2D cages

for shape manipulation. Lin and Chen [2024] have demonstrated

that the coordinates can be obtained from the Cauchy formula, and

have obtained closed-form expressions for their gradients and Hes-

sians, thus allowing for variational 2D shape deformation using

polynomial cages (that are still constrained to be made of segments

at binding time). They allow considering curved cages as input to
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some extent, but require a straightening step (similar in spirit to the

one of [Li et al. 2013]) to conform the cage to a state where their for-

mulas can be used – which is not always feasible, as disclaimed and

analyzed in their paper. In an unpublished preprint, Liu et al. [2024]

have extended the formalism of Michel and Thiery by providing

closed-form expressions for Green coordinates for input polynomial

2D rest cages directly, based on residual computations, making both

the derivation and the evaluation of the formulas non-trivial (e.g.,

requiring special cases for different root multiplicities).

In this paper, we extend those works and “complete the picture”

on this topic. We make the following contributions:

(1) We introduce Green and biharmonic coordinates for input/de-

formed polynomial cages,

(2) we derive their gradients and Hessians, and

(3) we present several variational methods using our various

polynomial subspaces (Green, harmonic, biharmonic).

2 Related work
While there are many different ways to deform 2D/3D shapes (e.g.,

free-form [Sederberg and Parry 1986], skeleton-based [Jacobson et al.

2011], brush-based [De Goes and James 2017; Manson and Schaefer

2010]), we focus here on cage-based 2D deformation methods, and

refer the interested reader to [Ströter et al. 2024] that surveys cage-

based 3D ones and [Jacobson et al. 2014] that compares cage-based

approaches to other popular methods (e.g., skeleton-based). In these

methods, each rest position is encoded once into cage coordinates

that describe it w.r.t. the rest cage, and may then be efficiently

decoded back from a deformed cage. Cage-based methods can be

classified in many ways (e.g., either interpolating or approximating);
here we expose the most related literature by classifying those

methods as the ones compatible with straight polygonal cages (the
majority) and the ones compatible with curved cages.

Traditional polygonal cages. Cage-based deformations can be seen

as an extension of Free-form deformations, that define explicitly

the volumetric region to deform using lattices [Sederberg and Parry

1986]. Cage-based methods have initially raised interest in the sci-

entific community due to their ability to define a deformation field

everywhere inside a volume solely from its boundary. Mean-Value

coordinates were introduced in several works [Floater 2003; Hor-

mann and Floater 2006; Ju et al. 2005] to present a solution to the

boundary value problem. While they allow defining generalized

barycentric coordinates in closed-form for arbitrary points, inside

or outside the domain, they result as a direct consequence in co-

ordinates that may be negative, possibly resulting in non-natural

deformation behavior (e.g., moving parts of the cage to the left re-

sults in motion of parts of the shape to the right). To remedy this

issue, Harmonic coordinates [Joshi et al. 2007] and Positive Mean-

Value coordinates [Lipman et al. 2007] were introduced. Those two

sets of coordinates require resorting to approximate solvers for

their computation, and do not allow for computing coordinates out-

side the cage, but ensure positivity of the coordinates. While all

previously-cited methods lead to interpolation on the cage bound-

ary, approximating coordinates were rendered popular by Lipman

et al., who introduced Green coordinates [Lipman et al. 2008] al-

lowing for angle-preserving 2D deformations under closed-form.

As conformal deformations are transformations whose Jacobian

𝐽 is the product of a rotation matrix and a uniform positive scale
(𝐽 = 𝑠𝑅, 𝑠 ∈ R+, 𝑅 ∈ 𝑆𝑂3), and the method of Lipman et al. can pro-

duce local degenerate transformations (i.e., 𝑠 might become null or

negative), we term their transformations angle-preserving instead

of conformal. Those coordinates were used for variational deforma-

tions [Ben-Chen et al. 2009] that relied on their shape-awareness
property, allowing for well-behaved deformations even in situations

where separate cage limbs are close-by in the encoding rest state.

Weber et al. used those coordinates as 2D deformation subspace and

bounded the stretch through constrained boundary analysis [Weber

and Gotsman 2010]), effectively guaranteeing conformality of the

deformations. This work has inspired following works on bounded-

distortion 2Dmappings, such as [Chen andWeber 2015, 2017]. To go

beyond what harmonic and conformal deformations can provide to

artists in terms of flexibility and expressivity, Weber and colleagues

introduced biharmonic cage-based deformations in 2D [Weber et al.

2012] and demonstrated the superiority of biharmonic functions

over harmonic ones, in particular in variational setups. This work

was extended for 3D deformations more than ten years later by

Thiery and colleagues [2024], who presented analytical formulas

for the coordinates and their derivatives.

Curved cages. While some of the previously-cited methods al-

low for highly-smooth deformations (e.g., harmonic, biharmonic,

Green: angle-preserving, conformal), the polygonal nature of the

cage remained a limitation in some deformation scenarios, as the

continuous-only nature of the cage itself may influence the lo-

cal smoothness of the function near cage vertices. Cage-based ap-

proaches have been extended to allow for curved elements for this
reason, and for the additional design flexibilities they offer. In 2D,

Li and colleagues have presented Cubic Mean-Value coordinates [Li

et al. 2013], which allowed artists to use 2D cages made of cubic

arcs with a Mean-Value interpolant. They allowed to some extent
considering curved cages as input, the only requirement being that

they can be put in a straightened state where encoding can be de-

fined (and that the inversion function allows fitting the input image

to deform in this state in a compatible manner). In 3D, cage-based

deformations using non-triangular facets have been proposed, ei-

ther for Mean-Value coordinates [Langer et al. 2006; Thiery et al.

2018] or Green coordinates [Thiery and Boubekeur 2022]. Regard-

ing 2D deformations, Michel and Thiery have introduced Green

coordinates for input polygonal cages allowing transforming into

arbitrary polynomial ones [Michel and Thiery 2023]. A major lim-

itation of this work is that it did not allow considering input rest
cages made of polynomial curves. This work was extended in sev-

eral ways since then. As already stressed, Lin and Chen have shown

that those coordinates can be equivalently computed using complex

coordinates [2024]. They have also introduced formulas for their

derivatives, allowing for variational deformations, and they have

proposed an inversion mechanism allowing to use curved polyno-

mial cages through a straightening step akin to the one of Li and

colleagues [2013]. As the straightening step is still required, not all

input polynomial cages can be considered, as disclaimed in their

paper. Recently, Liu et al. [2024] have shown in an unpublished

preprint that the computations suggested by Michel and Thiery can
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be extended to allow for arbitrary (non-intersecting) input polyno-

mial cages. As disclaimed earlier, our work follows in these footsteps,

and extends[Michel and Thiery 2023] by offering: i) using curved
polynomial cages as input, ii) closed-form expressions for Green

coordinates and for biharmonic coordinates in this setup, and iii)
closed-form expressions for the gradients and Hessians of both sets

of coordinates, allowing for variational shape deformation.

3 Background
We begin with a minimal review of 2D Green coordinates [Lipman

et al. 2008], necessary boundary integrals used by [Michel and

Thiery 2023], and 2D biharmonic coordinates [Weber et al. 2012].

3.1 Green coordinates
Any harmonic function 𝑓 can be defined in a bounded 2D domain

Ω from its boundary conditions thanks to Green’s third identity as

𝑓 (𝜂) =
∫

𝜉∈𝜕Ω

𝑓 (𝜉) 𝜕𝐺
𝜕𝑛𝜉
(𝜉, 𝜂)𝑑𝜉

︸                    ︷︷                    ︸
:=𝑓D (𝜂 )

+
∫

𝜉∈𝜕Ω

−𝐺 (𝜉, 𝜂) 𝜕𝑓
𝜕𝑛𝜉
(𝜉)𝑑𝜉

︸                       ︷︷                       ︸
:=𝑓N (𝜂 )

, (1)

with𝐺 (𝜉, 𝜂) := 1

2𝜋
log(∥𝜉 −𝜂∥) solution to △1𝐺 (𝜉, 𝜂) = △2𝐺 (𝜉, 𝜂) =

𝛿 (∥𝜉 − 𝜂∥) and 𝑛𝜉 the unit normal of the cage at point 𝜉 .

The term 𝑓D (𝜂) corresponds to the contribution given by the

diffusion of the Dirichlet boundary condition, i.e., the constraints

on the value of 𝑓 on the boundary 𝜕Ω of the integration domain.

The term 𝑓N (𝜂) corresponds to the diffusion of Neumann boundary

condition, which imposes the normal derivative of 𝑓 on 𝜕Ω.
We denote in the following the boundary 𝜕Ω as the cage made of

a non-intersecting set of curves 𝑐 𝑗 (oriented Counter-Clock-Wise

by convention) connected at vertices 𝑣𝑖 ∈ V . We note deformed

quantities with a bar (̄·) and rest-pose ones without it. For 𝛿 = (𝑥,𝑦),
we note 𝛿⊥ := (𝑦,−𝑥) the clock-wise rotation of 𝛿 by 𝜋/2.

3.1.1 Polygonal cages. Lipman et al. have introduced Green coordi-

nates for polygonal cages with vertices𝑉 and edges 𝐸 by considering

affine Dirichlet and constant Neumann conditions on each edge 𝑒 𝑗 ,

resulting in harmonic coordinates {𝜙𝑖 (𝜂),𝜓 𝑗 (𝜂)}:

𝜙𝑖 (𝜂) =
∫
𝜉∈𝜕Ω

Γ𝑖 (𝜉) 𝜕𝐺
𝜕𝑛𝜉
(𝜉, 𝜂)𝑑𝜉 (2)

𝜓 𝑗 (𝜂) =
∫
𝜉∈𝑒 𝑗
−𝐺 (𝜉, 𝜂)𝑑𝜉 , (3)

Γ𝑖 (𝜉) denoting the "hat" basis function of vertex 𝑖 , that takes value

𝛿
𝑗

𝑖
on vertex 𝑣 𝑗 and is affine on each edge of the polygonal cage.

They have demonstrated that their deformations are angle-preserving

in 2D iff the following Neumann constraint is set on each edge (link-

ing the Neumann and Dirichlet conditions):

𝜕𝑓

𝜕𝑛𝜉
(𝜉) =𝜎 𝑗𝑛 𝑗 ∀𝜉 ∈ 𝑒 𝑗 (4)

𝜎 𝑗 =
∥𝑒 𝑗 ∥
∥𝑒 𝑗 ∥

, (5)

𝜎 𝑗 capturing the stretch of edge 𝑗 and 𝑛 𝑗 denoting the unit normal

of 𝑒 𝑗 . This leads to the angle-preserving deformation function:

𝑓 (𝜂) =
∑︁
𝑖∈𝑉

𝜙𝑖 (𝜂)𝑣𝑖 +
∑︁
𝑗∈𝐸

𝜎 𝑗𝜓 𝑗 (𝜂)𝑛 𝑗 . (6)

Equivalent formulation from Cauchy integral. It is worth noting

that the exact same deformations can be obtained by mapping the

real plane R2
to the complex plane C, and using the Cauchy integral:

𝑓 (𝑧) = 1

2𝜋𝑖

∫
𝜕Ω

𝑓 (𝑤)
𝑤 − 𝑧𝑑𝑤. (7)

Weber and colleagues used this formulation to derive Cauchy co-

ordinates [2009], which were proven to be equivalent to Green

coordinates when using per-edge stretch factors 𝜎 𝑗 as in Eq. (5).

3.1.2 Polynomial deformed cages. Michel and Thiery [2023] have

extended the 2D Green coordinates of Lipman et al. [2008] and have

shown that if the rest curves 𝑐 and deformed curves 𝑐 are any 𝐶1

arcs (rather than straight edges 𝑒 𝑗 ), one can obtain angle-preserving

deformations using polynomial cages by baking directly Lipman et

al’s Neumann condition, resulting in the following contribution of

curve 𝑐 to the Dirichlet and Neumann terms:

𝑓 𝑐D (𝜂) =
1∫

𝑡=0

(𝑐 (𝑡) − 𝜂) · 𝑐′ (𝑡)⊥
2𝜋 ∥𝑐 (𝑡) − 𝜂∥2 𝑐 (𝑡)𝑑𝑡 (8)

𝑓 𝑐N (𝜂) =
1∫

𝑡 ∈0

−1

2𝜋
log (∥𝑐 (𝑡) − 𝜂∥) 𝑐′ (𝑡)⊥𝑑𝑡 . (9)

While they derive this general formula for arbitrary polynomials

for the rest-pose and the deformed cages, they obtain closed-form

expressions for input polygonal cages only (i.e., each input rest-pose

curve 𝑐 is a segment). Noting the deformed curves 𝑐 (𝑡) = ∑�̄�𝑐
𝑘=0

𝑡𝑘𝑐𝑘 ,

they derive several per-curve coordinates {𝜙𝑐
𝑘
(𝜂),𝜓𝑐

𝑘
(𝜂)}:

𝜙𝑐
𝑘
(𝜂) =

1∫
𝑡=0

(𝑐 (𝑡) − 𝜂) · 𝑐′ (𝑡)⊥
2𝜋 ∥𝑐 (𝑡) − 𝜂∥2 𝑡𝑘𝑑𝑡 (10)

𝜓𝑐
𝑘
(𝜂) =

1∫
𝑡 ∈0

−1

2𝜋
log (∥𝑐 (𝑡) − 𝜂∥) 𝑘𝑡𝑘−1𝑑𝑡, (11)

and their final deformation function reads therefore as:

𝑓 (𝜂) =
∑︁
𝑐∈𝜕Ω

�̄�𝑐∑︁
𝑘=0

(
𝜙𝑐
𝑘
(𝜂)𝑐𝑘 +𝜓𝑐𝑘 (𝜂)𝑐

⊥
𝑘

)
(12)

We effectively extend this method by providing closed-form ex-

pressions for themore general case where each input rest-pose curve

𝑐 is an arbitrary polynomial (see Section 4.1), and we also present

closed-form expressions for the derivatives of our new coordinates,

allowing their use for variational deformations (see Section 7).

Cauchy-based formulation. Again, it is feasible to derive those

coordinates from the Cauchy integral. Note that multiplication by

𝑖 ∈ C results in a counter-clock-wise rotation by 𝜋/2 in the complex

plane. We can therefore identify the coordinates of Michel and
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Thiery (Eq. (12)) with the ones that can be obtained from the Cauchy

formulation, which has been presented in [Lin and Chen 2024]:

𝑓 (𝑧) =
∑︁
𝑐∈𝜕Ω

�̄�𝑐∑︁
𝑘=0

(
𝜙𝑐
𝑘
(𝑧) − 𝑖𝜓𝑐

𝑘
(𝑧)

)
𝑐𝑘 (13)

3.2 Biharmonic coordinates for polygonal cages
A biharmonic function is fully described from its additional 3

𝑟𝑑
and

4
𝑡ℎ

order boundary conditions, using the following identity:

𝑓 (𝜂) =
∫

𝜉∈𝜕Ω

𝑓 (𝜉) 𝜕𝐺
𝜕𝑛𝜉
(𝜉, 𝜂)𝑑𝜉 +

∫
𝜉∈𝜕Ω

−𝐺 (𝜉, 𝜂) 𝜕𝑓
𝜕𝑛𝜉
(𝜉)𝑑𝜉

+
∫

𝜉∈𝜕Ω

△𝑓 (𝜉) 𝜕𝑔
𝜕𝑛𝜉
(𝜉, 𝜂)𝑑𝜉

︸                       ︷︷                       ︸
=:𝑓𝑏 (𝜂 ) (third order)

+
∫

𝜉∈𝜕Ω

−𝑔(𝜉, 𝜂) 𝜕△𝑓
𝜕𝑛𝜉
(𝜉)𝑑𝜉

︸                       ︷︷                       ︸
=:𝑓𝐵 (𝜂 ) (fourth order)

,

with 𝑔(𝜉, 𝜂) :=
∥𝜉−𝜂 ∥2

8𝜋
(log(∥𝜉−𝜂∥−1) the Green biharmonic kernel,

whose derivatives are:

▽1𝑔(𝜉, 𝜂) = − ▽2 𝑔(𝜉, 𝜂) =
2 log(∥𝜉 − 𝜂∥) − 1

8𝜋
(𝜉 − 𝜂)

𝐻1𝑔(𝜉, 𝜂) = 𝐻2𝑔(𝜉, 𝜂) =
2 log(∥𝜉 − 𝜂∥) − 1

8𝜋
𝐼2 +
(𝜉 − 𝜂) (𝜉 − 𝜂)𝑇

4𝜋 ∥𝜉 − 𝜂∥2
△1𝑔(𝜉, 𝜂) = △2𝑔(𝜉, 𝜂) =𝐺 (𝜉, 𝜂).
Weber et al. [2012] presented biharmonic coordinates for 2D

polygonal cages (each curve being a straight segment in the input

and in the deformed states). In the spirit of [Lipman et al. 2008], they

consider affine 3
𝑟𝑑

order △𝑓 and constant 4
𝑡ℎ

order
𝜕△𝑓
𝜕𝑛𝜉

boundary

conditions per edge, and derive biharmonic coordinates as

Φ𝑖 (𝜂) =
∫
𝜉∈𝐹1 (𝑖 )

Γ𝑖 (𝜉) 𝜕𝑔
𝜕𝑛𝜉
(𝜉, 𝜂)𝑑𝜉 (14)

Ψ𝑗 (𝜂) =
∫
𝜉∈𝑒 𝑗
−𝑔(𝜉, 𝜂)𝑑𝜉 (15)

Complementary to the harmonic basis functions {𝜙𝑖 (𝜂),𝜓 𝑗 (𝜂)}
associated with the input polygonal cage, {Φ𝑖 (𝜂),Ψ𝑗 (𝜂)} span a

biharmonic function space. Considering 2D values {𝑎𝑖 , ¯𝑏 𝑗 , 𝐴𝑖 , 𝐵 𝑗 }
associated with 𝑉 and 𝐸, a biharmonic function can be defined as

𝑓 (𝜂) =
∑︁
𝑖∈𝑉

𝜙𝑖𝑎𝑖 +
∑︁
𝑗∈𝐸

𝜓 𝑗 ¯𝑏 𝑗 +
∑︁
𝑖∈𝑉

Φ𝑖𝐴𝑖 +
∑︁
𝑗∈𝐸

Ψ𝑗𝐵 𝑗 (16)

Weber et al. illustrated their use for 2D deformation in different

scenarios, and have demonstrated their usefulness as additional

DoFs complementary to harmonic ones. We extend their work in

the sense that we allow biharmonic coordinates and their derivatives

to be computed for rest-pose and deformed polynomial cages, when
they were previously defined for rest-pose and deformed polygonal
cages only. We derive those coordinates in Sec. 4.2 and illustrate

their use for variational deformation in Sec. 7.

4 Cage coordinates for polynomial cages
We present in this section our main contributions which are the

closed-form expressions for Green and biharmonic coordinates for

polynomial cages, as well as their first and second order derivatives.

To ease reading of the following two sections, we frame our main

results to make them stand out from their mathematical derivations.

Notations for our curved cages. From now on, we consider cages

made of polynomial curves of degree 𝑁𝑐 at encoding (i.e., 𝑐 (𝑡) =∑𝑁𝑐
𝑘=0

𝑡𝑘𝑐𝑘 ) being deformed into polynomial curves of degree 𝑁𝑐 (i.e.,

𝑐 (𝑡) = ∑�̄�𝑐
𝑘=0

𝑡𝑘𝑐𝑘 ). We do not impose constraints on the degrees

of the rest and deformed curves respectively, though obviously

only refined curves (i.e., 𝑁𝑐 ≥ 𝑁𝑐 ) allow reproducing the input

shape, which is a common requirement inmost cage-basedmodeling

scenarios. By default, we use the same number of degrees of freedom

in the input and deformed cages.

Our key insight is that all our coordinates (Green, harmonic, bi-

harmonic) can be obtained in closed-form along with their gradient

and Hessian, for both input (rest) and output (deformed) polynomial

cages, from a single parametric integral 𝐹𝑐
𝐾
(Eq. (17)).

Parametric functional. We note 𝑐𝜂 (𝑡) = 𝑐 (𝑡) − 𝜂 (i.e., the curve

𝑐 expressed in the coordinate system centered in 𝜂) and 𝑃𝑐 (𝑡) :=

∥𝑐𝜂 (𝑡)∥2 the polynomial of degree 2𝑁𝑐 . We define the functional

𝐹𝑐𝐾 [𝑝] :=

∫
1

𝑡=0

𝑝 (𝑡)𝑑𝑡
𝑃𝑐 (𝑡)𝐾

=

∫
1

𝑡=0

𝑝 (𝑡)𝑑𝑡
∥𝑐 (𝑡) − 𝜂∥2𝐾

. (17)

for any polynomial 𝑝 (𝑋 ) :=
∑
𝑖 𝑝𝑖𝑋

𝑖
, whose derivation (Sec. 5) will

be key to finding all our coordinates and their derivatives.

We make the trivial yet critically-important observation that 𝐹 is

a linear functional:

𝐹𝑐𝐾

[∑︁
𝑖

𝑝𝑖𝑋
𝑖

]
=

∑︁
𝑖

𝑝𝑖𝐹
𝑐
𝐾

[
𝑋 𝑖

]
. (LIN)

This effectively moves the complexity of evaluating all our cage

coordinates to the one of evaluating 𝐹𝑐
𝐾
[𝑋 𝑖 ], for which we detail in

Sec. 5 an efficient implementation.

Our derivation of gradients and Hessians relies on the following

differential property of 𝐹 , for any scalar and vector polynomials 𝑝:

▽𝑇𝜂 𝐹𝑐𝐾 [𝑝] = 𝐹
𝑐
𝐾

[
▽𝑇𝜂 𝑝

]
+ 2𝐾𝐹𝑐𝐾+1

[
𝑝𝑐𝑇𝜂

]
. (DIF)

We now formulate the harmonic coordinates 𝜙 ,𝜓 (Sec. 4.1) and

biharmonic ones Φ, Ψ (Sec. 4.2), as well as their derivatives, as linear

combinations of {𝐹𝑐
𝐾
[𝑋 𝑖 ]}. We defer derivations to Appendix A.

4.1 Green coordinates for polynomial curves
We build upon the formalism of Michel and Thiery [2023], and

first derive Green coordinates for polynomial curves, effectively

extending their formulation by allowing rest-pose cages to be made

of non-straight polynomial curves.

4.1.1 Dirichlet term. 𝜙𝑐
𝑘
(𝜂) (Eq. (10)) can be rewritten as

𝜙𝑐
𝑘
(𝜂) = 1

2𝜋
𝐹𝑐

1

[
𝑋𝑘𝑐𝜂 · 𝑐′⊥

]
. (18)

Derivatives. We easily differentiate 𝜙𝑐
𝑘
(𝜂) using (DIF):

▽𝜂 (𝜙𝑐𝑘 ) (𝜂) = −
1

2𝜋
𝐹𝑐

1

[
𝑋𝑘𝑐′⊥

]
+ 1

𝜋
𝐹𝑐

2

[
𝑋𝑘

(
𝑐𝜂 · 𝑐′⊥

)
𝑐𝜂

]
. (19)
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We repeat this process once again to express its Hessian:

𝐻𝜂 (𝜙𝑐𝑘 ) (𝜂) =−
1

𝜋
𝐹𝑐

2

[
𝑋𝑘

(
𝑐′⊥𝑐𝑇𝜂 + 𝑐𝜂𝑐′⊥

𝑇 + 𝑐𝜂 · 𝑐′⊥𝐼2
)]

+ 4

𝜋
𝐹𝑐

3

[
𝑋𝑘

(
𝑐𝜂 · 𝑐′⊥

)
𝑐𝜂𝑐

𝑇
𝜂

]
(20)

4.1.2 Neumann term. Using integration by parts (more details given

in Appendix A),𝜓𝑐
𝑘
(𝜂) (Eq. (11)) can be rewritten as

𝜓𝑐
𝑘
(𝜂) = 1

2𝜋

(
− log(∥𝑐𝜂 (1)∥) + 𝐹𝑐1

[
𝑋𝑘𝑐𝜂 · 𝑐′

] )
. (21)

As noted by Michel and Thiery [2023],𝜓𝑐
0
(𝜂) = 0, which is trivial

to see beforehand since 𝑐0 does not appear in the expression of 𝑐′ (𝑡).

Derivatives. The gradient of𝜓𝑐
𝑘
(𝜂) is given by

▽𝜂𝜓𝑐𝑘 (𝜂) =
𝑘

2𝜋
𝐹𝑐

1

[
𝑋𝑘−1𝑐𝜂

]
. (22)

Differentiating ▽𝜂𝜓𝑐𝑘 (𝜂) using (DIF), we obtain

𝐻𝜂𝜓
𝑐
𝑘
(𝜂) = −𝑘

2𝜋
𝐹𝑐

1

[
𝑋𝑘−1

]
𝐼2 +

𝑘

𝜋
𝐹𝑐

2

[
𝑋𝑘−1𝑐𝜂𝑐

𝑇
𝜂

]
. (23)

4.1.3 Final expression. Considering the whole contour 𝜕Ω, we ob-
tain the following expression for the deformation function:

𝑓 (𝜂) =
∑︁
𝑐∈𝜕Ω

�̄�𝑐∑︁
𝑘=0

𝜙𝑐
𝑘
(𝜂)𝑐𝑘 +𝜓𝑐𝑘 (𝜂)𝑐

⊥
𝑘

(24)

Omitting (𝜂) for readability, the Jacobian ▽𝑇𝜂 𝑓 (𝜂) and the Hessian
𝐻𝜂 𝑓 (𝜂) of the deformation function are given by:

▽𝑇𝜂 𝑓 (𝜂) =
∑︁
𝑐∈𝜕Ω

�̄�𝑐∑︁
𝑘=0

𝑐𝑘 ▽𝑇𝜙𝑘𝑐 + 𝑐⊥𝑘 ▽
𝑇𝜓𝑘𝑐 (25)

𝐻𝜂 𝑓 (𝜂) =
∑︁
𝑐∈𝜕Ω

�̄�𝑐∑︁
𝑘=0

𝑐𝑘𝐻𝜙
𝑘
𝑐 + 𝑐⊥𝑘 𝐻𝜓

𝑘
𝑐 (26)

4.1.4 Harmonic-only coordinates. Note that harmonic deformations

can be obtained using the following expression:

𝑓 (𝜂) =
∑︁
𝑐∈𝜕Ω

�̄�𝑐∑︁
𝑘=0

𝜙𝑐
𝑘
(𝜂)𝑐𝑘 +𝜓𝑐𝑘 (𝜂)𝑛𝑘 (27)

i.e., by relaxing the normal alignment constraint (i.e., 𝑛𝑘 ≠ 𝑐⊥
𝑘
).

While it is common to use Eq. (24) for direct cage editing, Eq. (27)

offers more DoFs and spans a larger harmonic deformation subspace

commonly preferred in variational deformation scenarios (Sec. 7).

4.2 Biharmonic coordinates for polynomial curves
We demonstrate in this section that biharmonic coordinates, after a

few transformations of the traditional expressions, can be expressed

as combinations of {𝐹𝑐
𝐾
}, thus allowing for their computation and

the computation of their gradients and Hessians as well.

We follow in spirit the constructions of the biharmonic 3
𝑟𝑑

and

4
𝑡ℎ
-order boundary conditions advocated in [Weber et al. 2012]

and [Thiery et al. 2024], who introduced biharmonic coordinates

for cages with planar polygonal facets in 2D and 3D respectively.

Again, we defer mathematical details to Appendix A.

4.2.1 Third-order condition. By mimicking the construction pre-

sented in the previous section, we propose to model the third-order

boundary condition using a polynomial curve𝐴𝑐 (𝑡) =
∑
𝑘 𝑡

𝑘𝐴𝑘𝑐 , and

define the contribution of polynomial curve 𝑐 to the third order

boundary condition’s diffusion as:

𝑓 𝑐
𝑏
(𝜂) :=

1∫
𝑡=0

𝐴𝑐 (𝑡) ▽1𝑔(𝑐 (𝑡), 𝜂) · 𝑐′ (𝑡)⊥𝑑𝑡 (28)

=
∑︁
𝑘

𝐴𝑘𝑐

1∫
𝑡=0

𝑡𝑘𝑐𝜂 (𝑡) · 𝑐′ (𝑡)⊥

8𝜋

(
2 log(∥𝑐𝜂 (𝑡)∥) − 1

)
𝑑𝑡︸                                                  ︷︷                                                  ︸

=: Φ𝑐
𝑘
(𝜂 )

which thus introduces our first biharmonic coordinate Φ𝑐
𝑘
(𝜂).

We note 𝑃𝑐
𝑘
(𝑡) := 𝑡𝑘𝑐𝜂 (𝑡)·𝑐′ (𝑡)⊥/(8𝜋) and𝑤 (𝑡) := 1−2 log(∥𝑐𝜂 (𝑡)∥).

𝑃𝑐
𝑘
(𝑡) is a simple polynomial (𝑃𝑐

𝑘
(𝑡) :=

∑
𝑘 𝛼𝑘𝑡

𝑘
) whose primitive

𝑃𝑐
𝑘
(𝑡) taking value 0 at 𝑡 = 0 can be computed analytically:

𝑃𝑐
𝑘
(𝑡) :=

∫ 𝑡

𝑢=0

𝑃𝑐
𝑘
(𝑢)𝑑𝑢 =

∑︁
𝑘

𝛼𝑘𝑡
𝑘+1/(𝑘 + 1),

and𝑤 ′ is given by𝑤 ′ (𝑡) = −2𝑐′ (𝑡) ·𝑐𝜂 (𝑡)/∥𝑐𝜂 (𝑡)∥2.
Using integration by parts (

∫
1

0
𝑃𝑐
𝑘
𝑤 = [𝑃𝑐

𝑘
𝑤]1

0
−
∫

1

0
𝑃𝑐
𝑘
𝑤 ′), we obtain

Φ𝑐
𝑘
(𝜂) = −𝑤 (1)𝑃𝑐

𝑘
(1) − 2𝐹𝑐

1

[
(𝑐′ · 𝑐𝜂)𝑃𝑐𝑘

]
(29)

Similarly, noting𝑄𝑐
𝑘
(𝑡) := 𝑡𝑘𝑐′ (𝑡)⊥/(8𝜋) and �̃�𝑐

𝑘
(𝑡) =

∫ 𝑡
𝑢=0

𝑄𝑐
𝑘
(𝑢)𝑑𝑢

its primitive taking null value in 𝑡 = 0, we obtain

▽𝜂Φ𝑐𝑘 (𝜂) =𝑤 (1)�̃�
𝑐
𝑘
(1) + 2𝐹𝑐

1

[
(𝑐′ · 𝑐𝜂)�̃�𝑐𝑘 − (𝑄

𝑐
𝑘
· 𝑐𝜂)𝑐𝜂

]
(30)

Finally, 𝐻𝜂Φ
𝑐
𝑘
is given by

𝐻𝜂Φ
𝑐
𝑘
(𝜂) = 1

4𝜋
𝐹𝑐

1

[
𝑋𝑘

(
𝑐′⊥𝑐𝑇𝜂 + 𝑐𝜂𝑐′⊥

𝑇 + (𝑐′⊥ · 𝑐𝜂)𝐼2
)]

− 1

2𝜋
𝐹𝑐

2

[
𝑋𝑘 (𝑐′⊥ · 𝑐𝜂)𝑐𝜂𝑐𝑇𝜂

]
(31)

4.2.2 Fourth-order condition. Setting the fourth-order boundary

condition as a polynomial curve 𝐵𝑐 (𝑡) :=
∑
𝑘 𝑡

𝑘𝐵𝑐
𝑘
, the contribution

of curve 𝑐 to its diffusion can be expressed similarly:

𝑓 𝑐𝐵 (𝜂) :=

1∫
𝑡=0

−𝐵𝑐 (𝑡)𝑔(𝑐 (𝑡), 𝜂)𝑑𝑡 (32)

=
∑︁
𝑘

𝐵𝑘𝑐

1∫
𝑡=0

𝑡𝑘 ∥𝑐𝜂 (𝑡)∥2

8𝜋
(1 − log(∥𝑐𝜂 (𝑡)∥))𝑑𝑡︸                                         ︷︷                                         ︸
=: Ψ𝑐

𝑘
(𝜂 )

which leads to our second biharmonic coordinate Ψ𝑐
𝑘
(𝜂).

As in Sec. 4.2.1, we solve those integrals using integration by

parts. We note 𝑅𝑐
𝑘
(𝑡) := 𝑡𝑘 ∥𝑐𝜂 (𝑡)∥2/(8𝜋), 𝑣 (𝑡) := (1− log(∥𝑐𝜂 (𝑡)∥)),

𝑆𝑐
𝑘
(𝑡) := −𝑡𝑘𝑐𝜂 (𝑡)/(8𝜋), and 𝑤 (𝑡) := 1 − 2 log(∥𝑐𝜂 (𝑡)∥). 𝑅𝑐𝑘 (𝑡) and
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𝑆𝑐
𝑘
(𝑡) are simple polynomials whose primitives can be computed

analytically, and𝑤 ′ (𝑡) = 2𝑣 ′ (𝑡) = −2𝑐′ (𝑡) ·𝑐𝜂 (𝑡)/∥𝑐𝜂 (𝑡)∥2.
Noting �̃�𝑐

𝑘
(𝑡) :=

∫ 𝑡
𝑢=0

𝑅𝑐
𝑘
(𝑢)𝑑𝑢 and 𝑆𝑐

𝑘
(𝑡) =

∫ 𝑡
𝑢=0

𝑆𝑐
𝑘
(𝑢)𝑑𝑢 the prim-

itives of 𝑅𝑐
𝑘
and 𝑆𝑐

𝑘
taking null values in 𝑡 = 0, we obtain closed-form

expressions for Ψ𝑐
𝑘
(𝜂) and its derivatives as

Ψ𝑐
𝑘
(𝜂) = 𝑣 (1)�̃�𝑐

𝑘
(1) + 𝐹𝑐

1

[
�̃�𝑐
𝑘
𝑐′· 𝑐𝜂

]
(33)

▽𝜂Ψ𝑐𝑘 (𝜂) =𝑤 (1)𝑆
𝑐
𝑘
(1) + 2𝐹𝑐

1

[
𝑆𝑐
𝑘
𝑐′· 𝑐𝜂

]
(34)

𝐻𝜂Ψ
𝑐
𝑘
(𝜂) =

𝑤 (1) + 2𝐹𝑐
1

[
𝑋𝑘+1𝑐′· 𝑐𝜂

]
8𝜋 (𝑘 + 1) 𝐼2 −

𝐹𝑐
1

[
𝑋𝑘𝑐𝜂𝑐

𝑇
𝜂

]
4𝜋

(35)

These new coordinates {Φ𝑐
𝑘
(𝜂),Ψ𝑐

𝑘
(𝜂)} are biharmonic by con-

struction (by definition of Eqs. (28) and (65)), and result in two

biharmonic boundary conditions that are complementary to each

other, which together create a rich space for biharmonic function de-

sign. While it is typically difficult to control deformations by setting

those boundary conditions by hand explicitly, we experiment in Sec-

tion 7 their utility in the context of variational shape deformations

driven by polynomial biharmonic boundary conditions.

4.2.3 Final expression. Considering the whole cage 𝜕Ω, we obtain:

𝑓 (𝜂) =
∑︁
𝑐∈𝜕Ω

�̄�𝑐∑︁
𝑘=0

𝜙𝑐
𝑘
(𝜂)𝑎𝑘𝑐 +𝜓𝑐𝑘 (𝜂) ¯𝑏

𝑘
𝑐 + Φ𝑐𝑘 (𝜂)𝐴

𝑘
𝑐 + Ψ𝑐𝑘 (𝜂)𝐵

𝑘
𝑐 (36)

Note that those coordinates formally extend the ones we previ-

ously introduced, since Green coordinates for polynomial cages are

obtained by setting (𝑎𝑘𝑐 = 𝑐𝑘 ,
¯𝑏𝑘𝑐 = 𝑐⊥

𝑘
, 𝐴𝑘𝑐 = 𝐵𝑘𝑐 = 0).

Omitting (𝜂) for readability, the Jacobian ▽𝑇𝜂 𝑓 (𝜂) and the Hessian
𝐻𝜂 𝑓 (𝜂) of the deformation function are given by:

▽𝑇𝜂 𝑓 (𝜂) =
∑︁
𝑐∈𝜕Ω

𝑁𝑐∑︁
𝑘=0

𝑎𝑘𝑐 ▽𝑇𝜙𝑘𝑐 + ¯𝑏𝑘𝑐 ▽𝑇𝜓𝑘𝑐 +𝐴𝑘𝑐 ▽𝑇Φ𝑘𝑐 + 𝐵𝑘𝑐 ▽𝑇Ψ𝑘𝑐 (37)

𝐻𝜂 𝑓 (𝜂) =
∑︁
𝑐∈𝜕Ω

𝑁𝑐∑︁
𝑘=0

𝑎𝑘𝑐𝐻𝜙
𝑘
𝑐 + ¯𝑏𝑘𝑐𝐻𝜓

𝑘
𝑐 +𝐴𝑘𝑐𝐻Φ𝑘𝑐 + 𝐵𝑘𝑐𝐻Ψ𝑘𝑐 (38)

5 A simple framework for the evaluation of 𝐹𝑐
𝐾
[𝑝] and the

coordinates

5.1 Mathematical derivation
We recall that we need to evaluate 𝐹𝑐

𝐾
[𝑝] for any polynomial 𝑝 =∑

𝑛 𝑝𝑛𝑋
𝑛
, which, thanks to the linearity property of 𝐹 (LIN), reduces

to computing the following:

𝐹𝑐𝐾,𝑛 := 𝐹𝑐𝐾 [𝑋
𝑛] =

∫
1

𝑡=0

𝑡𝑛𝑑𝑡

𝑃𝑐 (𝑡)𝐾
(39)

We present in this section a simple mathematical derivation, which

we separate from all necessary implementation details that we

present in the next subsection.

We follow [Michel and Thiery 2023], and start by factorizing the

polynomial 𝑃𝑐 (𝑡) = ∥𝑐 (𝑡) − 𝜂∥2:

𝑃𝑐 = 𝐴
∏
𝑗

(
𝑋 − 𝜔 𝑗

)𝑚 𝑗
(40)

where 𝜔 𝑗 ∈ C are the complex roots of 𝑃𝑐 with their multiplicity𝑚 𝑗

(summing up to 2𝑁𝑐 ). These roots are found as the eigenvalues of

the companion matrix of 𝑃𝑐 [Edelman and Murakami 1995] using

standard linear algebra tools (Eigen [2010] in our case) and 𝐴 is the

leading coefficient of 𝑃𝑐 . This leads to

𝐹𝑐𝐾,𝑛 =
1

𝐴𝐾

∫
1

𝑡=0

𝑡𝑛∏
𝑗

(
𝑡 − 𝜔 𝑗

)𝑚 𝑗𝐾 𝑑𝑡 (41)

We next compute a partial fraction decomposition of
1

𝑃𝑐 (𝑡 )𝐾
to

express it as a sum of single-root terms (see Algo. 1 and Theorem 1):

1

𝑃𝐾𝑐
=

1

𝐴𝐾
∏
𝑗

(
𝑋 − 𝜔 𝑗

)𝑚 𝑗𝐾 =
1

𝐴𝐾

∑︁
𝑖

𝛼𝑖

(𝑋 − 𝜔 𝑗𝑖 )𝑛𝑖
(42)

Exposing this decomposition is key to expressing 𝐹𝑐
𝐾,𝑛

using a

simple and concise formula:

𝐹𝑐𝐾,𝑛 =
1

𝐴𝐾

∑︁
𝑖

𝛼𝑖𝐺𝑛,−𝑛𝑖 (𝜔 𝑗𝑖 ) (43)

where 𝐺𝑎,𝑏 (𝜔) :=
∫

1

𝑡=0
𝑡𝑎 (𝑡 − 𝜔)𝑏 can be evaluated recursively:

𝐺𝑎,𝑏 (𝜔) =

𝜔𝑎𝐷 (𝜔) +𝑈𝑎 (𝜔) 𝑏 = −1

1

𝑏+1

(
(1 − 𝜔)𝑏+1 − (0 − 𝜔)𝑏+1

)
𝑎 = 0

1

𝑏+1

(
(1 − 𝜔)𝑏+1 − 𝑎𝐺𝑎−1,𝑏+1 (𝜔)

)
𝑎 > 0 and 𝑏 ≠ −1

with

𝐷 (𝜔) := Log(1 − 𝜔) − Log(0 − 𝜔)

=
1

2

log

(
1+ 1−2 Re(𝜔)

∥𝜔 ∥2

)
+ 𝑖 atan2

(
Im(𝜔), ∥𝜔 ∥2−Re(𝜔)

)
𝑈𝑎 (𝜔) :=

𝑎−1∑︁
𝑘=0

𝜔𝑘

𝑎 − 𝑘

The first case (𝑏 = −1) is a key result obtained by Michel and

Thiery (see [Michel and Thiery 2023], Section 3.3, Lemma 2), the

second case (𝑎 = 0) corresponds to direct integration of (𝑡 −𝜔)𝑏 , and
the last case (𝑎 > 0 and 𝑏 ≠ −1) corresponds to a simple integration

by parts of 𝐺𝑎,𝑏 and leads to the recursive nature of 𝐺𝑎,𝑏 .

5.2 Algorithmic details
Fig. 2 summarizes our implementation. For a given curve 𝑐 and a 2D

evaluation point 𝜂, we evaluate all the 𝐹𝑐
𝐾,𝑛

we need together since

they share the same roots {𝜔 𝑗 }. In particular, we precompute the

powers of 𝜔 𝑗 and 1 −𝜔 𝑗 for all 𝑗 to speed-up the evaluation of𝐺𝑎,𝑏 .

Partial fraction decomposition. Our progressive and efficient com-

putation of the partial fraction decomposition is detailed in Algo. 1.

We recall the (classical) partial fraction decomposition theorem,

which we present in simplified form to accommodate our use case:

ACM Trans. Graph., Vol. 44, No. 4, Article 76. Publication date: August 2025.
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Fig. 2. Overview of computations. (a) The roots of 𝑃𝑐 are found using the eigenvalues of its companion matrix. (b) Algo. 1 provides the terms 𝛼𝑖 (𝑋 − 𝜔𝑘𝑖 )−𝛽𝑖
of the expansion of 1/𝑃𝐾𝑐 . (c) We integrate these terms using Eq. (43). (d)With the 𝐹𝑐

𝐾
(𝑋𝑛 ) in hand, computing our various coordinates is straightforward.

Theorem 1. Let𝑄 be a polynomial of the form𝑄 :=
𝐽∏
𝑗=0

(𝑋 − 𝜔 𝑗 )𝑚 𝑗 .
1

𝑄
can be decomposed into a sum of single root fractions as:

1

𝑄
=

𝐽∏
𝑗=0

1

(𝑋 − 𝜔 𝑗 )𝑚 𝑗
=

𝐽∑︁
𝑗=0

𝑚 𝑗 −1∑︁
𝑘=0

𝑎 𝑗𝑘

(𝑋 − 𝜔 𝑗 )𝑚 𝑗 −𝑘
with

𝑎 𝑗𝑘 :=
1

𝑘!

(
1

𝑄 𝑗

) (𝑘 )1
(𝜔 𝑗 )

𝑄 𝑗 :=
∏
𝑙≠𝑗

(𝑋 − 𝜔𝑙 )𝑚𝑙 :=
𝑄

(𝑋 − 𝜔 𝑗 )𝑚 𝑗

Note that, while the explicit formula for

(
1/𝑄 𝑗

) (𝑘 )
is difficult to

write explicitly, computing those iteratively is straightforward. Indeed,
since 1/𝑄 𝑗 =

∏
𝑙≠𝑗

(𝑋 − 𝜔𝑙 )−𝑚𝑙 , its derivative is given by(
1/𝑄 𝑗

) ′
=

∑︁
𝑙≠𝑗

−𝑚𝑙 (𝑋 − 𝜔𝑙 )−𝑚𝑙 −1

∏
𝑙 ′≠𝑙, 𝑗

(𝑋 − 𝜔𝑙 ′ )−𝑚𝑙 ′ ,

and one can see by recurrence that derivatives of arbitrary orders

of 1/𝑄 𝑗 are of the form of sum of polynomials:(
1/𝑄 𝑗

) (𝑘 )
=

∑︁
𝑙

𝛽𝑙

∏
𝑙 ′
(𝑋 − 𝜔𝑙𝑙 ′ )𝑚𝑙𝑙 ′ . (44)

To compute efficiently and iteratively the derivatives of 1/𝑄 𝑗 , we

use an abstract representation of (rational) polynomials of the form

of Eq. 44 as a list of lists {𝛽𝑙 ∈ R; {(rootIndex𝑙𝑙 ′ ,𝑚𝑙𝑙 ′ ) ∈ N × Z}𝑙 ′ }𝑙
and implement the associated derivative (see Algo. 2 for a simple

pseudo code) and evaluation routines.

Link with [Liu et al. 2024]. Liu et al. obtain a different formula

based on residuals computation. Our two different (yet equivalent)

formulations are linked simply because residuals computations are

one way to express the rational fraction decomposition (and/or their

integral) we exhibit. The computational framework we use makes

the exposition of our 𝐹 functional much simpler, and allows for

the "almost free" derivation of the derivatives of the coordinates

(requiring the reformulation of the formulas to make our paramet-

ric integrals appear, and computing integrals of 𝑡𝑛/∥𝑐 (𝑡) − 𝜂∥2𝐾

1 𝑓 (𝑘 ) denotes the 𝑘𝑡ℎ derivative of 𝑓

ALGORITHM 1: Partial fraction decomposition of 1/𝑄 .

Data: The list of unique roots (𝜔 𝑗 )0≤ 𝑗<𝐽 ∈ C and their multiplicity

𝑚 𝑗 > 0 for the polynomial𝑄 for which we want to compute

the expansion of
1

𝑄
.

Result: A list of triplets (𝛼𝑖 , 𝑛𝑖 , 𝑗𝑖 ) ∈ R × N∗ × N (i.e., 𝑛𝑖 > 0)

representing terms of the form 𝛼𝑖 (𝑋 − 𝜔 𝑗𝑖 )−𝑛𝑖 which sum

to
1

𝑄
. The number of terms is the degree

∑
𝑗𝑚 𝑗 of𝑄 .

Structures: 𝑅 is a sum of products of terms (𝑋 − 𝜔𝑘 )𝑚 where

𝑚 ∈ Z; it is abstracted as a list of lists of (𝑘,𝑚) , which
makes both evaluation and differentiation convenient.

L ← ∅;
for 𝑗 ← 0 to 𝐽 − 1 do

// R is initialized to 1/Q without the 𝑗𝑡ℎ root of Q:

𝑅 ←∏
𝑙≠𝑗 (𝑋 − 𝜔𝑙 )−𝑚𝑙 // 𝑅 ← 1/𝑄 𝑗

for 𝑘 = 0 to𝑚 𝑗 − 1 do
𝛼 ← 𝑅 (𝜔 𝑗 )

𝑘!
// i.e., 𝛼 is 𝑎 𝑗𝑘 = (1/𝑄 𝑗 ) (𝑘 ) (𝜔 𝑗 )/𝑘!

𝑛 ←𝑚 𝑗 − 𝑘 ;
append (𝛼,𝑛, 𝑗 ) to L;
𝑅 ← derivative(𝑅) // 𝑅 ← (1/𝑄 𝑗 ) (𝑘+1), Algo 2

end
end
return L = { (𝛼𝑖 , 𝑛𝑖 , 𝑗𝑖 ) }𝑖 abstracting 1/𝑄 =

∑
𝑖 𝛼𝑖 (𝑥 − 𝜔 𝑗𝑖 )−𝑛𝑖

instead of 𝑡𝑛/∥𝑐 (𝑡) − 𝜂∥2 – i.e., our formulation allows for similar

computations for the simple extension to the case 𝐾 > 1).

We also recall that, compared with [Liu et al. 2024], we introduce

formulas for biharmonic coordinates w.r.t.. curved polynomial cages,

and we also introduce formulas for gradients and Hessians of both

sets of coordinates, allowing for variational shape deformation.

Numerical stability. When eigenvalues of the companion matrix

of 𝑃𝑐 are less than 𝜖 = 10
−5

apart, we merge them into a single root

with the sum of their multiplicities. This prevents the evaluation of

𝑅(𝜔) in Algorithm 1 from reaching numerical limits, and generalizes

the stability test of Michel and Thiery [2023].

As they note, 𝐷 (·) is well defined for 𝜂 ∉ 𝑐 : since in such a

case 𝑃𝑐 (𝑡) is not null for 𝑡 = 0 or 𝑡 = 1, so 𝜔 ∉ {0, 1}. Lastly, we
found in practice that evaluation of 𝐹𝑐

𝐾,𝑛
may required increased

floating point precision for robust evaluation. In our experiments, we

observed that the computation of 𝐹𝑐
3,𝑛 , necessary for the evaluation

of the Hessian of the 𝜙 harmonic coordinate, required sometimes
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ALGORITHM 2: Derivative of a single fully-factorized polynomial

𝑅 = 𝛽
∏
𝑙 ′ (𝑋 − 𝜔𝑙 ′ )𝑚𝑙 ′ (a single element of the sum in Eq. (44)).

Data: A structure FactorizedPoly containing the list of pairs (root

index, exponent) { (ind𝑙 ′ ,𝑚𝑙 ′ ) ∈ N × Z}𝑙 ′ and a dominant

coefficient 𝛽 abstracting 𝑅.

Result: A list abstracting 𝑅′ taking the form given in Eq. (44).

L ← [] // to fill

for 𝑘 = 0 to R.terms.size() - 1 do
FactorizedPoly newElem = 𝑅;

𝑚 = newElem.terms[𝑘].exponent;

if𝑚 == 0 then
continue // constant terms disappear

end
newElem.dominantCoeff *=𝑚;

newElem.terms[𝑘].exponent -= 1;

if𝑚 == 1 then
newElem.terms.erase(newElem.terms.begin() + 𝑘)

end
L.push_back(newElem)

end
return L // abstraction of 𝑅′

Table 1. Timings in 𝜇s for roots {𝜔 𝑗 } extraction for a single evaluation
point 𝜂, depending on the degree 𝑁𝑐 of the input rest pose curvev 𝑐 .

Degree 𝑁𝑐 1 2 3 4 5 6

Time (𝜇𝑠) 2.5 7.6 17.4 30.2 57.2 91

multiprecision for degree 𝑛 > 1 polynomials. While it renders the

computation much slower, we use multiprecision solely for the

evaluation of 𝐹𝑐
3,𝑛 in the computation of the Hessians (which we

use only for sparse set of points distributed along the boundary in

variational deformation methods – see Section 7).

Timings and complexity analysis. We provide here computation

timings, which were recorded on a laptop with an Intel Processor

(i7-10850H CPU @ 2.70GHz, 8 cores) and 32GB of RAM. All timings

provided in this section were averaged over thousands of evaluation

points. They exhibit a strong variance as they depend on many

factors (input curve geometry, location of point 𝜂 w.r.t. curves, etc.),

and should therefore be understood as illustrating global tendencies

and orders of magnitude only.

Table 1 gives timings for extracting the roots of the companion

matrix for a single point w.r.t. to a single curve, those timings de-

pending solely on the degree of the rest-pose curve. Table 2 gives

timings for computing the Green harmonic coordinates (and gra-

dients) w.r.t. a single curve, those timings depending both on the

degree of the rest-pose curve and the degree of its deformable coun-

terpart. Table 3 gives the same information for the biharmonic case.

Key points emerging from this analysis are that:

• root-finding and the rest are relatively on par overall,

• biharmonic coordinates require a bit less than twice the time

needed for harmonic coordinates computation (similarly for

their gradients and Hessians), and

Table 2. Timings𝑇coord in 𝜇s for the computation of Green/harmonic coor-
dinates {𝜙𝑘𝑐 ,𝜓𝑘𝑐 } and timings𝑇grad for the computation of their gradients
for a single evaluation point w.r.t. a single curve 𝑐 , depending on its degree
𝑁𝑐 in the input rest pose state and its degree �̄�𝑐 in the deformable state.
We provide in each cell (𝑇coord/𝑇coord +𝑇grad).

𝑁𝑐

𝑁𝑐
1 2 3 4 5 6

1 8/15 9/20 11/25 12/26 12/27 13/28

2 20/47 22/55 24/59 25/68 27/68 28/69

3 38/168 42/108 45/118 50/125 51/135 51/140

4 69/174 74/191 79/215 79/212 82/225 101/235

5 111/293 113/305 117/323 124/340 135/363 137/371

6 171/461 173/477 175/481 182/510 195/532 202/555

Table 3. Timings𝑇coord in 𝜇s for the computation of biharmonic coordinates
{𝜙𝑘𝑐 ,𝜓𝑘𝑐 ,Φ𝑘𝑐 ,Ψ𝑘𝑐 } (supersetting the harmonic coordinates whose timings are
reported in Table 2) and timings𝑇grad for the computation of their gradients
for a single evaluation point w.r.t. a single curve 𝑐 , depending on its degree
𝑁𝑐 in the input rest pose state and its degree �̄�𝑐 in the deformable state.
We provide in each cell (𝑇coord/𝑇coord +𝑇grad).

𝑁𝑐

𝑁𝑐
1 2 3 4 5 6

1 14/35 17/35 22/42 24/50 27/52 29/57

2 35/78 39/86 43/88 47/100 49/112 53/120

3 62/160 70/173 80/177 82/202 86/215 94/216

4 119/286 129/300 138/315 143/325 150/359 157/358

5 193/454 207/470 206/478 216/500 222/524 234/549

6 272/656 297/688 299/725 312/740 322/780 349/793

Table 4. Timings𝑇𝐻double (resp.𝑇
𝐻
256) inms for the computation of Green/har-

monic coordinates’ Hessians {𝐻𝜙𝑘𝑐 , 𝐻𝜓𝑘𝑐 } using double precision (resp. us-
ing 256 bits)for the evaluation of 𝐹𝑐

3
for a single evaluation point w.r.t. a

single curve 𝑐 , depending on its degree 𝑁𝑐 in the input rest pose state and
its degree �̄�𝑐 in the deformable state. We provide in each cell (𝑇𝐻double/𝑇

𝐻
256).

𝑁𝑐

𝑁𝑐
1 2 3 4 5 6

1 .03/1.1 .03/1.6 .04/1.6 .04/1.7 .04/2/0 .05/2.2

2 .1/7.4 .11/7.4 .12/9.3 .12/8.6 .14/9.2 .16/9.8

3 .3/29 .3/30 .3/30 .3/31 .3/32 .3/35

4 .6/89 .6/88 .6/89 .7/90 .7/92 .7/95

5 1.2/207 1.2/210 1.3/211 1.3/213 1.29/216 1.3/221

6 2.1/420 2.1/429 2.1/433 2.1/435 2.2/441 2.2/446
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Fig. 3. Comparison with numerical integration. N denotes the number of discretization steps used per curve. Note that instabilities remain even in the highest
discretization case (N=200), for which computations are more expensive than evaluating our formulas. The case N=100 provides an equal-time comparison.

• the degree 𝑁𝑐 of the rest pose curve has a stronger impact on

timings than the degree 𝑁𝑐 of the deformation curve.

Table 4 gives timings for the computation of the Hessians of our

Green coordinates, comparing the use of standard double precision
or 256-bit precision for the computation of 𝐹𝑐

3
. As one can see, using

multiprecision libraries (we use mpfr++[Fousse et al. 2007]) for the

computation of 𝐹𝑐
3
is the main bottleneck in this setup. While this

impacts the performances drastically, Hessians are typically only

computed for very few points (points sparsely distributed around

the boundary of the input cage) in common variational methods.

Simplest (and most frequent) case analysis. Though our expres-

sions aremeant to handle the general case and allow for computation

of gradients and Hessians of all our coordinates, difficult cases are

actually rare in practice. The polynomial 𝑃𝑐 (𝑡) = ∥𝑐 (𝑡) − 𝜂∥2 has in
general roots of multiplicity 1 (as in general, there is no 𝑡 such that

𝑐 (𝑡) = 𝜂 since 𝑐 is a 1𝐷 curve embedded in the 2𝐷 plane, i.e., of null

Lebesguemeasure) and themost frequent computations are required

for coordinates only in our applications – needed for deforming

the whole image inside the cage, while gradients and Hessians are

typically required at very few points sampled inside the domain

for variational methods. The most frequent case (by far) therefore

requires relatively simple computations, since the decomposition of

Eq. (42) leads to trivial terms only (𝑛𝑖 = 1 ∀𝑖 in Eq. (42)) in this case,

and 𝐺 then requires no recursion to compute 𝐹𝑐
1,𝑛 (Eq. (43)).

Comparison with a numerical integration baseline. We illustrate in

Fig. 3 the benefits of using our closed-form expressions compared

with standard numerical integration. Not only does a numerical

integration approach not allow reaching the quality offered by our

closed-form expressions, numerical instabilities are also difficult to

predict ahead of time as they may appear at different places depend-

ing on: the input curves geometry, the degree of the deformation

curve, or the relative placement of the evaluation point to the cage.

While resorting to numerical integration may seem a “simple alter-

native” to the actual implementation of our expressions, performing

robust and accurate numerical integration of diffusion kernels such

Fig. 4. Some rest shapes are not easily bounded by cages made of straight
edges. Our method allows specifying rest cages made of polynomial curves
(a). Previous methods require 4 times more segments in the rest cage (b),
which makes the manipulation more prone to wiggling stretch factor.

as the ones we consider is non trivial and is an active research

domain on its own (see for example [Bang et al. 2023]).

6 Green Deformations Results
Our Green deformations strictly extend the ones of Michel and

Thiery [2023] and share all their basic properties, namely they en-

sure angle-preserving deformations and are compatible with curved

deformed cages. However, Michel and Thiery’s coordinates can

be used with straight rest cages only. We illustrate in Fig. 4 that

overcoming this limitation facilitates the use of cage coordinates

on shapes that are not provided in (sometimes artificially) straight

poses. Straight cages can always end up fitting the shape under

repeated refinement, but this can lead to a high number of coordi-

nates, and a refined cage is not as easily controlled by an artist as a

polynomial one. More examples can be found in Figs. 1, 3 and 12.

ACM Trans. Graph., Vol. 44, No. 4, Article 76. Publication date: August 2025.



76:10 • Michel, Jacobson, Chaudhuri , Thiery

7 Variational Shape Deformation
In this section, we investigate the use of our coordinates for varia-

tional shape deformation.

In the following, we note 𝐶 the set of control points for all de-

formed curves in order. All the variational methods presented in

this section require minimizing deformation energies of the form:

ESUBSPACECOST (𝐶) :=
1

2



A𝐶 − B

2

. (45)

where COST refers to the type of penalty being considered (e.g., as-

rigid-as-possible, ...) and SUBSPACE refers to the type of coordinates

we use (Green, harmonic, biharmonic). The result of the minimiza-

tion of ESUBSPACECOST is the set of cage parameters 𝐶 which is then used

to deform the entire space inside the rest pose cage.

Continuity enforcement. Our cage-based deformations functions

(Eqs. (27) and (36)) require summing up the contributions of the

various curves, which are each expressed as polynomials. This setup

considers effectively that our cages are "curve-soups" (i.e., separate

disconnected curves). While this is harmless when manipulating the

cages directly (as the separate curves have their endpoints meeting

at the same geometric location by design), we need to enforce exact

continuity of the deformation function when "jumping" from the

endpoint of a curve to the starting point of its adjacent curve in

variational deformation scenarios. This is done by ensuring that

endpoints of adjacent curves 𝑐 and 𝑐next coincide (𝑐 (1) = 𝑐next (0)),
i.e.: ∑︁

𝑘

𝑐𝑘 = 𝑐next
0

(46)

Noting𝐶 the set of control points for all curves in order, considering

Eq. (46) for all pairs of successive curves (𝑐, 𝑐next) leads to

Λ𝐶 = 0 (CONT)

Minimizing Eq. (45) subject to Eq. (CONT) is done by solving for(
A𝑇A Λ𝑇

Λ 0

) (
𝐶

𝜆

)
=

(
A𝑇B

0

)
(47)

which corresponds to the minimization of the general Lagrangian

L(𝐶, 𝜆) := 1

2



A𝐶 − B

2 + 𝜆𝑇Λ𝐶 .
For variational biharmonic coordinates, we enforce continuity

of the third-order boundary condition at curve extremities as well,

resulting in additional constraints of the form given in Eq. (46),

doubling the number of lines in the system written in Eq. (CONT).

7.1 Variational Green deformations
We start by presenting a simple variational Green-based deformation

solver. Given user prescribed point constraints CP = {𝑝𝑖 ↦→ 𝑝𝑖 }𝑖 ,
we minimize the following quadratic energy

EGREENAAffAP (𝑓 ) :=
∑︁
𝑖∈CP

∥ 𝑓 (𝑝𝑖 ) − 𝑝𝑖 ∥2 + 𝜎𝐻
∑︁
ℎ∈CH

∥𝐻 𝑓 (ℎ)∥2 (48)

where CH is a set of points distributed over the input domain, at

which the Hessian of 𝑓 is minimized (thus resulting in "as-affine-

as-possible" – AAffAP – deformations). Following [Ben-Chen et al.

2009], we sample Hessian constraints CH near 𝜕Ω (in practice, we

sample 10 constraints regularly along each curve).

Fig. 5. We allow for variational Green-based deformations, by minimizing a
simple smoothness energy such as an as-affine-as-possible one (minimizing
the square norm of the Hessian) under positional constraints.

We show in Fig. 5 results of this approach when using a Green-

based subspace (i.e., using 𝑓 as in Eq. (27), subject to strict con-

tinuity constraints as described in Eq. (CONT)), for shapes with

input curved cages. These results are similar to the ones presented

in [Lin and Chen 2024], though our approach does not require any

straightening step. While this allows for direct editing of the shape

using simple positional constraints (as opposed to explicit cage ma-

nipulation), the resulting deformations exhibit possibly undesired

local scaling since restricted to angle-preserving deformations (i.e.,

with arbitrarily large or small stretch), which is a typical pitfall that

makes unconstrained Green-based variational methods difficult to

control in practice. It may be possible to obtain guarantees on the

bounds of the resulting deformation, by extending the optimization

framework of Weber and Gotsman [2010] to the case of polyno-

mial input/deformed curves. Now let us demonstrate the use of our

harmonic and biharmonic coordinates for other energies.

7.2 Variational as-rigid/similar-as-possible deformations
Among the various deformation energies that are ubiquitous in

Computer Graphics, as-rigid-as-possible (ARAP) and as-similar-as-

possible (ASAP) energies are very popular choices for variational

shape deformation [Ben-Chen et al. 2009; Weber et al. 2012]. They

measure how much a given spatial deformation function differs in

the least-squares sense from locally-isometric and locally-conformal

respectively. Inspired by the work of Ben-Chen and colleagues [Ben-

Chen et al. 2009], we present results of variational deformations for

the two following standard ARAP and ASAP energies:

EHar/BiharARAP/ASAP (𝑓 ) := 𝜖𝑓

∑︁
𝑝𝑖 ∈CP

∥ 𝑓 (𝑝𝑖 ) − 𝑝𝑖 ∥2 (49)

+ 𝜖𝑔
∑︁

𝑝 𝑗 ∈CJ

∥ ▽𝑇 𝑓 (𝑝 𝑗 ) − 𝐽 𝑗 ∥2 + 𝜖ℎ
∑︁

𝑝ℎ∈CH

∥𝐻 𝑓 (𝑝 𝑗 )∥2

s.t. {𝐽 𝑗 } are rotations (ARAP) or similarities (ASAP),
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Fig. 6. Comparison of various settings of our variational deformation solver. Energy settings for ARAP: (𝜖𝑓 , 𝜖𝑔, 𝜖ℎ ) : (10
4, 10

2, 10
−2 ) . Energy settings for ASAP:

(𝜖𝑓 , 𝜖𝑔, 𝜖ℎ ) : (10
4, 10

2, 10
−4 ) . �̄� denotes the degree of the two long curves in the deformation space (the other two curves are kept as segments).

where CP sample point constraints with target {𝑝𝑖 }, CJ sample

Jacobian constraints with target {𝐽 𝑗 }, and CH sample Hessian penal-

ties, using either an harmonic (Eq. (27)) or biharmonic (Eq. (36))
coordinate subspace.

Typically, the Jacobian targets {𝐽 𝑗 } are unknown rotation/simi-

larity matrices, and the energy is minimized using a standard local/-

global iterative solver [Sorkine and Alexa 2007]:

• In the local step, the primary variables (here, the cage defor-

mation parameters) are kept fixed, ▽𝑇 𝑓 is evaluated at every

point of CJ , and the unknown {𝐽 𝑗 } are updated as closest

rotations/similarities to {▽𝑇 𝑓 (𝑝 𝑗 )};
• In the global step, the auxiliary variables {𝐽 𝑗 } are kept fixed,
and the primary variables (here, the cage deformation param-

eters) are optimized by minimizing Eq. (49), which amounts

to solving a linear system (Eq. (47)).

We compare the use of harmonic and biharmonic deformation

subspaces for ARAP/ASAP deformations in Fig. 6. Using segments

only (𝑁 = 1) does not provide a rich enough deformation space

for the positional constraints to be met without sacrificing quality

(though biharmonic deformations perform better than harmonic

deformations, which result in the head being squashed). Increasing

the degree of the deformation curves allows improving the quality

quickly. Note that the energy settings for harmonic and biharmonic

deformations differ slightly. We found that both types of deforma-

tion subspaces require different energy penalty settings to provide

overall similar global behavior. Our understanding is that the baked-

in regularity priors of the coordinates play an important role, as

biharmonic diffused functions allow modeling stronger local defor-

mation oscillations than harmonic diffused functions for example.

While this prevents rigorous comparison between the two deforma-

tion subspaces, we set up in this example the energy parameters to

allow for close-to-exact fitting of the positional constraints while

best respecting the local Jacobian constraints each time.

We also present results of variational (harmonic ARAP) deforma-

tions in Fig. 7, in which we compare the use of curved cages with

the use of straight ones. While it may not be always necessary to

use polynomial curves of high degree to properly enclose a given

shape to deform, we observe that the geometric structure of the

cage impacts strongly the resulting deformations, and that much

smoother deformations can be obtained by using smooth deforma-

tion curves as underlying subspace for variational deformations. We

believe that both resulting deformations are acceptable, and that our

technique ultimately offers alternative DoFs for the artist to control

the deformation style. More examples can be found in Fig. 12.

7.3 Boundary-aligned deformations
We investigate in this section how to adapt the "Thickness-preserving"

energies presented in [Weber et al. 2012] in 2D or [Thiery et al. 2024]

in 3D. In those works on biharmonic cage-based deformations, the

user prescribes cage vertex positions (i.e., the Dirichlet condition),

and all other 3 boundary conditions for their cage-based biharmonic

deformations are optimized to result in minimization of deformation

energies sampled at points on the boundary of the cage.

We aim at obtaining the type of deformation behavior they offer

in a purely variational context: the user merely prescribes positional

constraints instead of setting up the deformed cage by hand (i.e.,

the Dirichlet boundary condition). To do so, we present novel de-

formation energies encouraging boundary-aligned transformations,

and we adapt the previously-introduced local/global solver for min-

imizing those. Note that our goal is not as much to showcase "novel

variational methods" as to provide an enriched context for a more

detailed comparison of harmonic vs biharmonic subspaces.
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Fig. 7. Our variational solver is compatible with curved rest cages. Using a curved cage (top row, we specify in the left figure the degrees of the various curves),
the solver introduces less breaks in curvature than when using a straight cage, as displayed in the bottom row for comparison. We had to modify slightly the
polygonal cages to make them valid: we moved a few vertices in the first example (ibis) to enclose the image, and we added a few vertices in the second
example (crab) to enclose the image while avoiding self-intersections of the cage. To further quantify the expressiveness power of the subspace provided by
curved cages, we provide inside the figure the ARAP energy (EHarARAP, Eq. (49)) reached by the two different solvers.

Fig. 8. We showcase our boundary-aligned deformations on a simple example. All curves in the rest pose cage are segments (degree 1), and their deformable
counterparts are of degree 3 except for one small segment that remains of degree 1 in the deformation state (we show the degree near each curve in the input
figure). Columns 2 to 6 showcase variational deformations obtained from 6 positional constraints. Column 2 shows a simple attempt at localizing rigid stretch
along the boundary normal directions, and motivates the use of a more complex strategy. Columns 3 and 4 show our results for harmonic deformations (for 2
different energy weights settings) and columns 5 and 6 show our results for biharmonic deformations (same energy settings as in columns 3 and 4).
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Illustration of the complexity with a first simple attempt. As ARAP
methods allow for efficient variational deformations, a natural idea

is to restrain the rigidity constraint to the normal direction and let

the tangent direction unconstrained. This can be done by sampling

rigidity constraints on 𝜕Ω ("near 𝜕Ω" to be precise, as our coordi-

nates require otherwise special case computations on 𝜕Ω, as pointed
out in [Thiery et al. 2024] in 3D), and minimizing

E :=𝜖𝑓

∑︁
𝑝𝑖 ∈CP

∥ 𝑓 (𝑝𝑖 ) − 𝑝𝑖 ∥2 + 𝜖𝑔
∑︁

(𝑝 𝑗 ,𝑛 𝑗 ) ∈CJ

∥𝜕𝑛 𝑗 𝑓 (𝑝 𝑗 ) − �̃� 𝑗 ∥2

+ 𝜖ℎ
∑︁

(𝑝ℎ,𝑛) ∈CH

∥𝜕2

𝑛 𝑓 (𝑝 𝑗 )∥2 , s.t. {�̃� 𝑗 } are unit norm,

therefore encouraging the transformation to be local rigid in the

normal direction (constraining at boundary sample 𝑝 𝑗 with rest-pose

normal 𝑛 𝑗 the normal derivative to remain unit-norm through the

use of auxiliary variables �̃� 𝑗 describing the transformed normal). An

illustration of this approach is given in Fig. 8, column 2. As one can

see, while the constrained stretch along the normal direction results

indeed in a local "preserved thickness", the resulting deformations

appear unnatural, as transformed tangents and normals do not

remain orthogonal along the cage boundary.

In order to obtain deformations "sliding along the boundary" of

the cage such as the ones presented by Weber et al.[2012] (branded

"thickness preserving"), we present a simple strategy.

7.3.1 Boundary-aligned constrained stretch. To model transforma-

tions allowing for arbitrary stretch but preserving the local angles

between transformed normals and transformed tangents, we con-

strain the Jacobian to have boundary-aligned stretches. At a given

boundary point 𝑝 with rest-pose normal 𝑛, we aim at obtaining a

deformation Jacobian exhibitting the following decomposition:

𝐽 =𝑈 Σ𝐵𝑇𝑛 (50)

𝐵𝑛 := (𝑛, 𝑛⊥) ∈ 𝑆𝑂2, Σ being a diagonal matrix describing the lo-

cal stretch along rest-pose boundary and tangent respectively, and

𝑈 ∈ 𝑆𝑂2 describing the rotation post-stretch of the transforma-

tion. This constraint is equivalent to requiring the singular value

decomposition of 𝐽 to have normal/tangent stretch directions.

We denote the space of such matrices following Eq. (50) as S𝑛 :

S𝑛 :=

{
𝑀 =𝑈 Σ𝐵𝑇𝑛 ,𝑈 ∈ 𝑆02, Σ =

(
𝛼 0

0 𝛽

)}
⊂ R2×2 . (51)

We further denote the subspace ofmatrices in S𝑛 verifying Σ(0, 0) =
1 (i.e., the normal stretch is additionally constrained to 1) as S1

𝑛 :

S1

𝑛 :=

{
𝑀 =𝑈 Σ𝐵𝑇𝑛 ,𝑈 ∈ 𝑆02, Σ =

(
1 0

0 𝛽

)}
⊂ S𝑛 . (52)

Minimization using a global/local solver. While constraining the

Jacobian to exhibit this structure is complex and requires non-linear

optimization, we adapt the common local/global solver used for

ARAP/ASAP transformations to obtain a simple iterative procedure.

To do so, given an input Jacobian matrix 𝐽 , we simply replace
the local step of ARAP/ASAP optimizations (see Sec. 7.2) with
a novel projection procedure onto 𝑆𝑛 (or S1

𝑛), and optimize for

𝐽 = argmin

𝑗∈S𝑛/S1

𝑛

∥ 𝐽 − 𝑗 ∥2𝐹 (53)

We detail our projection procedures in Appendix B and C for clar-

ity, and focus in this section on showcasing their use for boundary-

aligned stretchable cage-based deformations.

Equipped with this projection procedure, we minimize the energy

EHar/BiharAligned𝜕 (𝑓 ) := 𝜖𝑓

∑︁
𝑝𝑖 ∈CP

∥ 𝑓 (𝑝𝑖 ) − 𝑝𝑖 ∥2 (54)

+ 𝜖𝑔
∑︁

(𝑝 𝑗 ,𝑛 𝑗 ) ∈CJ

∥ ▽𝑇 𝑓 (𝑝 𝑗 ) − 𝐽 𝑗 ∥2 + 𝜖ℎ
∑︁

𝑝ℎ∈CH

∥𝐻 𝑓 (𝑝 𝑗 )∥2

s.t. {𝐽 𝑗 ∈ S𝑛 𝑗 /S1

𝑛 𝑗
} are transformations aligned onto 𝑛 𝑗 ,

which minimizers showcase deformed shapes that naturally slide

along the cage boundary.

Fig. 8 (columns 3 to 6) show results of our approach when using

a harmonic (columns 3 and 4) and a biharmonic (columns 5 and

6) subspace, using a free normal stretch (i.e., we use S𝑛 as local

projection space). While harmonic deformations provide already

interesting results, we see that increasing the "aligned Jacobian"

penalty weight results in positional constraints that become more

difficult to meet. Biharmonic deformations allow for much more

intuitive boundary-aligned deformations while fitting much bet-

ter the positional constraints (the same penalty weights are used

to compare the use of both subspaces). As noted in [Thiery et al.

2024], there is a fundamental reason behind this: it is not just that

biharmonic subspaces "contain more degrees of freedom" than har-

monic deformations; biharmonic deformations allow simply for

more complex fitting of mixed boundary conditions than harmonic

deformations. Harmonic deformations are mathematically uniquely

defined by the Dirichlet condition alone (akin to positional con-

straints), while biharmonic deformations require mathematically

the setting of both the Dirichlet (akin to positional constraints) and

the Neumann (akin to derivative constraints that we set using our

novel boundary-aligned Jacobian constraints) boundary conditions.

We compare the use of our "free normal stretch" (projecting onto

S𝑛) and "rigid normal stretch" (projecting onto S1

𝑛) variants in Fig. 9.

As one can see, in such a constrained setup, biharmonic deforma-

tions provide results that better fit the constraints (either alignment

or positional constraints) than harmonic deformations.

ASAP vs Green-based deformations. One can compare conceptu-

ally ASAP (enforcing angle-preservation in the least-squares sense
only) and Green-based (strictly angle-preserving, Sec. 7.1) deforma-

tions by noting that enforcing soft instead of hard constraints may

provide extended flexibility to the user. For example, one can mix

"local ARAP constraints", "local ASAP constraints" (with possible

local bounds), and "local boundary-aligned Jacobian constraints",

as all those are similarly implemented in a local/global solver. This

would be impossible with strictly angle-preserving deformations

that, by design, disallow stretch along preferred directions.

8 Discussion
Comparison to cage-straightening approaches. Otherworks, e.g. [Li

et al. 2013; Lin and Chen 2024], allow using input cages that are

curved. However, those do not diffuse the deformation function from

the input curved cages, but instead straighten them into polygonal
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Fig. 9. Out of our two variants, biharmonic deformations provide results that fit better the constraints (either alignment or positional constraints) than
harmonic deformations. The input configuration is the one given in Fig. 8.

a) Rest cage made
of 2 cubic curves

b) "Straightened" cage
(invalid rest pose)

"Straightening"
each curve

c) Our deformation

Fig. 10. Contrary to [Li et al. 2013; Lin and Chen 2024], our approach does
not require straightening the cage before encoding. Our approach works
therefore on any input curved cage that does not self-intersect.

cages, and consider this straightened state as intermediate structure

for encoding. This strategy has several drawbacks:

(1) Some input cages simply cannot be straightened, demonstrat-

ing that this approach is not a general solution. Consider the

simple case of a curved cage made of two curves: those cages

degenerate to two segments with null interior (see Fig. 10).

(2) Straightening the curved cages has to be done without cre-

ating unwanted intersections, as Mean-Value (for [Li et al.

2013]) or Green ([Lin and Chen 2024]) and biharmonic coor-

dinates (based on Green’s identities) require cages to be the

boundary of a proper Euclidean volume: no self intersection

can occur, or the coordinates cannot be defined. This poses

specific challenges for complex input configurations.

On the contrary, as long as our input curved cages are free of self-

intersection, our coordinates and their derivatives can be defined

everywhere inside the curved cage. To the best of our knowledge,

our approach is the only one allowing for variational deformations

stemming from the use of (non-intersecting) polynomial 2D cages.

Automatic curved cages. The automatic or semi-automatic con-

struction of curved cages allowing for the deformation of arbitrary

2D graphics is a challenging task. In this paragraph, we describe a

simple and practical procedure to produce such cages, by construct-

ing a very loose envelope approximated with a closed Bezier spline.

Given an input image, we convert it to a binary raster mask, where

foreground pixels are labeled 1 (white) and background pixels are

labeled 0 (black). Next, the foreground region is morphologically

dilated by 𝑛𝑑 pixels (in our experiments, 𝑛𝑑 is typically 20-50 for

Fig. 11. Our “autocage” approach generates rest cages made of curved
arcs that accurately fit the input image while generating a number of con-
trol points small enough to be manually handled. It can also be used for
variational deformation, where the low number of control points enables in-
teractive manipulation. Example (c) shows that we can handle input shapes
with challenging geometry and topology like this snowflake, without lead-
ing to an excessive number of control points – though we are not able to
obtain an artist-made cage such as in Fig. 12 with our method. A future
direction to improve our “autocage” approach would be to try preserving
symmetries of the original input, which is not currently the case.

images of about 2000 × 2000 pixels). The polygonal outer bound-

ary of the dilated region, which we assume is a single connected

component by this point, is then extracted by tracing pixels. This

loop is broken at an arbitrary point to create an open polyline. Fi-

nally, a piecewise cubic Bezier spline is fitted to this polyline using

a variant of the algorithm of Schneider [1990], with modifications
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to preserve very sharp corners. Since sparse, smooth cages are de-

sired and not tight envelopes, the Bezier fitting tolerance is set to a

very high value (typically 0.3-0.8𝑛𝑑 ) in order to smoothly approxi-

mate the polygon with a very small number of control points. This

process certainly does not guarantee that the result will be free of

self-intersections, and providing a real-time cage design method

with guaranteed validity is an interesting future work direction.

Fig. 11 shows results of our approach on three different examples.

While defining cages for shape deformation is fundamentally ill-

posed and depends on the type of deformations intended by the

artist, one can use those cages as a starting point for their creation.

Note that, while manipulating cages with many control points may

be tedious (compare our autocage on the Snowflake example, vs

our artists-made cage for the same input in Fig. 12), our variational

approach allows deforming the cage’s content by specifying few

positional/orientation constraints, circumventing this issue.

Limitations and Future work. Our work has several limitations.

The first obvious limitation is that we require the artist to provide the

rest cage. While we mitigate this issue with our "autocage" approach,

it remains an open challenge to provide efficient controls for the

cage creation while obtaining guarantees on, e.g., the topology of

the resulting interior. This opens up new exciting research avenues

to Bezier contour optimization and Vector Graphics approximation

in general. Based on our experiments in this area, we envision that

an intuitive method providing efficient control over (i) the local

level of detail of the cage, (ii) the local range of the curve degrees,

(iii) the local distance to the vector graphics to appximate/deform

and (iv) the geometric regularity of the control structure in terms of

parameterization stretch and range of curve curvature would find

several interesting applications beyound cage-based deformations.

While our method allows computing in theory arbitrary integrals

of the form 𝐹𝑐
𝐾,𝑛

(Eq. 39) and coordinates of any order, we observed

in practice that double floating point precision was necessary to

compute those for large values of the parameters, limiting in practice

their computation beyond a certain point before having to rely on

multi-precision computation libraries. One could argue the limited

usefulness of curves of very large degree (above 5) in everyday-life

practical scenarios, but we believe that improving the computation

of our coordinates is an interesting theoretical work.

In addition, we believe that speeding-up our computation process

can be achieved by exploiting the spatial coherency and smooth-

ness of the problem at hand. For example, while we compute roots

of ∥𝑐 (𝑡) − 𝜂∥2 by using an iterative decomposition of the compan-

ion matrix from scratch for every different point 𝜂, we know that

the roots exhibit a smooth and controlled geometric structure for

smoothly-varying 𝜂 positions. A possible strategy could be to warm

start the iterative solvers using solutions found for neighboring

pixels/positions, paving the road for an efficient bottom-up mul-

tiresolution computation strategy. Possible accelerations could be

obtained similarly by exploring different root-finding strategies,

exploiting again the fact that the roots for neighboring pixels are

a controllable approximation of the solution, since we can relate

search regions for the roots to simple geometric measures on the

polynomials, such as leading coefficients [Hirst and Macey 1997].

Implementing our coordinates on the GPU would allow speeding up

their computations. While we believe that the strategy we exposed

for roots-finding would allow for coarse-to-fine GPU implemen-

tation, conservative predictive memory bounding for our iterative

rational fraction derivation (Algo. 2) would be necessary as well, as

dynamic memory allocations are not permitted on the GPU.

Finally, extending our technique to computing other types of coor-

dinates is of interest. For example, computing close form expressions

for 𝑘-harmonic functions (𝑘 > 2) using polynomial cages seems fea-

sible, since one can always fall back on the computation of our 𝐹𝑐
𝐾,𝑛

using integration by parts. Deriving expressions for each case is still

a tedious mathematical problem, and finding an elegant formulation

for arbitrary 𝑘-harmonic functions would maybe find applications

beyond Computer Graphics. Interestingly, finding Mean-Value Co-

ordinates for arbitrary polynomial curves cannot however be done

simply by extending our approach though, as the MVC kernel is

an odd-degree kernel of the form 1/𝑃𝑐 (𝑡)3/2, breaking our assump-

tions that it can be decomposed into a rational fraction with simple

elements. We believe that extending Mean-Value Coordinates for

arbitrary polynomial curves both in the rest and the deformed state,

by extending either the formulation of Li and colleagues [2013]

or the more standard formulation (not involving gradient interpo-

lation) of Floater [2003], is an interesting and challenging future

work.

Conclusion. We provide in this work closed-form expressions and

a practical computation method for Green (harmonic) and bihar-

monic coordinates along with their gradients and Hessians, for input

rest cages made of polynomial curves of arbitrary order that can be

curved. The usage of closed-form expressions for the derivatives per-

mits the implementation of various variational methods, allowing

artists to deform shapes either by editing the cage curves directly or

by editing few control points of the deformed shape directly, which

facilitates the use of cage-based deformations on complex inputs.
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Fig. 12. Extra results. In examples (1) and (2) the user directly manipulates the cage control points to deform the bound shape. In example (3), we compare this
direct approach (3b) with a variational solver (3c). In example (4), we show Green-based deformations obtained using direct manipulation of curves of degree 2
to 4, and show ARAP and ASAP deformations for positional constraints outside the reach of isometric deformations. In example (5), we provide additional
results of biharmonic ARAP deformations, using curves of degree 2 (the rest pose contains curves of degree ranging from 1 to 4).
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A Detailed derivation of our coordinates and their
derivatives

We provide here a fully detailed derivation of our coordinates and

their gradients and Hessians.

A.1 Green coordinates for polynomial curves
We build upon the formalism of Michel and Thiery [2023], and

first derive Green coordinates for polynomial curves, effectively

extending their formulation by allowing rest-pose cages to be made

of non-straight polynomial curves.

A.1.1 Dirichlet term. Eq. (10), 𝜙𝑐
𝑘
(𝜂) can be directly rewritten as

𝜙𝑐
𝑘
(𝜂) = 1

2𝜋
𝐹𝑐

1

[
𝑋𝑘𝑐𝜂 · 𝑐′⊥

]
. (55)

Derivatives. We easily differentiate 𝜙𝑐
𝑘
(𝜂) using (DIF):

▽𝜂 (𝜙𝑐𝑘 ) (𝜂) = −
1

2𝜋
𝐹𝑐

1

[
𝑋𝑘𝑐′⊥

]
+ 1

𝜋
𝐹𝑐

2

[
𝑋𝑘

(
𝑐𝜂 · 𝑐′⊥

)
𝑐𝜂

]
. (56)

We repeat this process once again to express its Hessian:

𝐻𝜂 (𝜙𝑐𝑘 ) (𝜂) =−
1

𝜋
𝐹𝑐

2

[
𝑋𝑘

(
𝑐′⊥𝑐𝑇𝜂 + 𝑐𝜂𝑐′⊥

𝑇 + 𝑐𝜂 · 𝑐′⊥𝐼2
)]

+ 4

𝜋
𝐹𝑐

3

[
𝑋𝑘

(
𝑐𝜂 · 𝑐′⊥

)
𝑐𝜂𝑐

𝑇
𝜂

]
(57)

A.1.2 Neumann term. We recall that 𝑐𝜂 := 𝑐 (𝑡) − 𝜂, leading to

▽𝑇𝜂 𝑐𝜂 = −𝐼2, ▽𝜂 (∥𝑐𝜂 ∥2) = −2𝑐𝜂 and 𝐻𝜂 (∥𝑐𝜂 ∥2) = 2𝐼2. Using integra-

tion by parts (

∫ 𝑏
𝑎
𝑢′𝑣 = [𝑢𝑣]𝑏𝑎 −

∫ 𝑏
𝑎
𝑢𝑣 ′, with 𝑢′ = 𝑐′, 𝑣 = log(∥𝑐𝜂 ∥)

and 𝑢 = 𝑐, 𝑣 ′ = 𝑐′𝜂/∥𝑐𝜂 ∥2), the Neumann term can be rewritten as

𝑓 𝑐N (𝜂) =
−1

2𝜋

1∫
𝑡=0

log(∥𝑐𝜂 (𝑡)∥)𝑐′ (𝑡)⊥𝑑𝑡

=
−1

2𝜋

[
log

(
∥𝑐𝜂 (𝑡)∥

)
𝑐 (𝑡)⊥

]
1

𝑡=0

+
1∫

𝑡=0

𝑐𝜂 (𝑡) · 𝑐′ (𝑡)
2𝜋 ∥𝑐𝜂 (𝑡)∥2

𝑐 (𝑡)⊥𝑑𝑡

=
−1

2𝜋
log(∥𝑐𝜂 (1)∥)

∑︁
𝑘

𝑐⊥
𝑘
+ 1

2𝜋
log(∥𝑐𝜂 (0)∥)𝑐⊥0

+
∑︁
𝑘

1∫
𝑡=0

𝑡𝑘𝑐𝜂 (𝑡) · 𝑐′ (𝑡)
2𝜋 ∥𝑐𝜂 (𝑡)∥2

𝑑𝑡𝑐⊥
𝑘

=
∑︁
𝑘>0

1

2𝜋

(
− log(∥𝑐𝜂 (1)∥) + 𝐹𝑐1

[
𝑋𝑘𝑐𝜂 · 𝑐′

] )︸                                            ︷︷                                            ︸
:= 𝜓𝑐

𝑘
(𝜂 )

𝑐⊥
𝑘

leading to

𝜓𝑐
𝑘
(𝜂) = 1

2𝜋

(
− log(∥𝑐𝜂 (1)∥) + 𝐹𝑐1

[
𝑋𝑘𝑐𝜂 · 𝑐′

] )
. (58)

As noted by Michel and Thiery [2023],𝜓𝑐
0
(𝜂) = 0, which is trivial

to see beforehand since 𝑐0 does not appear in the expression of 𝑐′ (𝑡).

Derivatives. The gradient of 𝜓𝑐
𝑘
(𝜂) is more easily obtained by

differentiating directly 𝑓 𝑐N (𝜂) with respect to 𝜂:

▽𝑇𝜂 𝑓 𝑐N (𝜂) =
1∫

𝑡=0

𝑐′ (𝑡)⊥𝑐𝜂 (𝑡)𝑇

2𝜋 ∥𝑐𝜂 (𝑡)∥2
𝑑𝑡 =

∑︁
𝑘>0

𝑐⊥
𝑘

(
𝑘

2𝜋
𝐹𝑐

1

[
𝑋𝑘−1𝑐𝜂

]︸             ︷︷             ︸
=: ▽𝜂𝜓𝑐𝑘 (𝜂 )

)𝑇

leading to

▽𝜂𝜓𝑐𝑘 (𝜂) =
𝑘

2𝜋
𝐹𝑐

1

[
𝑋𝑘−1𝑐𝜂

]
. (59)

Differentiating ▽𝜂𝜓𝑐𝑘 (𝜂) using (DIF), we obtain

𝐻𝜂𝜓
𝑐
𝑘
(𝜂) = −𝑘

2𝜋
𝐹𝑐

1

[
𝑋𝑘−1

]
𝐼2 +

𝑘

𝜋
𝐹𝑐

2

[
𝑋𝑘−1𝑐𝜂𝑐

𝑇
𝜂

]
. (60)
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A.2 Biharmonic coordinates for polynomial curves
A.2.1 Third-order condition. We recall that we model the third-

order boundary condition using a polynomial curve𝐴𝑐 (𝑡) =
∑
𝑘 𝑡

𝑘𝐴𝑘𝑐 ,

and define the contribution of polynomial curve 𝑐 to the third order

boundary condition’s diffusion as:

𝑓 𝑐
𝑏
(𝜂) :=

1∫
𝑡=0

𝐴𝑐 (𝑡) ▽1𝑔(𝑐 (𝑡), 𝜂) · 𝑐′ (𝑡)⊥𝑑𝑡 (61)

=

1∫
𝑡=0

𝐴𝑐 (𝑡)
𝑐𝜂 (𝑡) · 𝑐′ (𝑡)⊥

8𝜋

(
2 log(∥𝑐𝜂 (𝑡)∥) − 1

)
𝑑𝑡

=
∑︁
𝑘

𝐴𝑘𝑐

1∫
𝑡=0

𝑡𝑘𝑐𝜂 (𝑡) · 𝑐′ (𝑡)⊥

8𝜋

(
2 log(∥𝑐𝜂 (𝑡)∥) − 1

)
𝑑𝑡︸                                                  ︷︷                                                  ︸

=: Φ𝑐
𝑘
(𝜂 )

which thus introduces our first biharmonic coordinate Φ𝑐
𝑘
(𝜂). Dif-

ferentiating it w.r.t. 𝜂, we obtain

▽𝜂 Φ𝑐𝑘 (𝜂) =
1∫

𝑡=0

𝑡𝑘𝑐′ (𝑡)⊥
8𝜋

(
1 − 2 log(∥𝑐𝜂 (𝑡)∥)

)
𝑑𝑡

−
1∫

𝑡=0

𝑡𝑘𝑐𝜂 (𝑡) ·𝑐′ (𝑡)⊥𝑐𝜂 (𝑡)
4𝜋 ∥𝑐𝜂 (𝑡)∥2

𝑑𝑡

𝐻𝜂Φ
𝑐
𝑘
(𝜂) =

1∫
𝑡=0

𝑡𝑘
(
𝑐′ (𝑡)⊥𝑐𝜂 (𝑡)𝑇 + 𝑐𝜂 (𝑡)𝑐′ (𝑡)⊥𝑇

)
4𝜋 ∥𝑐𝜂 (𝑡)∥2

𝑑𝑡

+
1∫

𝑡=0

𝑡𝑘
(
𝑐𝜂 (𝑡) ·𝑐′ (𝑡)⊥𝐼2

)
4𝜋 ∥𝑐𝜂 (𝑡)∥2

𝑑𝑡 −
1∫

𝑡=0

𝑡𝑘
(
𝑐𝜂 (𝑡) ·𝑐′ (𝑡)⊥

)
𝑐𝜂 (𝑡)𝑐𝜂 (𝑡)𝑇

2𝜋 ∥𝑐𝜂 (𝑡)∥4
𝑑𝑡

Those expressions include, in this form, terms for whichwe do not

have available formulas (in particular, the ones containing the loga-

rithm). In the following, we rework these expressions and demon-

strate that they can equivalently be expressed as linear combinations

of our parametric 𝐹𝑐
𝐾
functional.

We first focus on the derivation of Φ𝑐
𝑘
.

We note 𝑃𝑐
𝑘
(𝑡) := 𝑡𝑘𝑐𝜂 (𝑡)·𝑐′ (𝑡)⊥/(8𝜋) and𝑤 (𝑡) := 1−2 log(∥𝑐𝜂 (𝑡)∥).

𝑃𝑐
𝑘
(𝑡) is a simple polynomial (𝑃𝑐

𝑘
(𝑡) :=

∑
𝑘 𝛼𝑘𝑡

𝑘
) whose primitive

𝑃𝑐
𝑘
(𝑡) taking value 0 at 𝑡 = 0 can be computed analytically:

𝑃𝑐
𝑘
(𝑡) :=

∫ 𝑡

𝑢=0

𝑃𝑐
𝑘
(𝑢)𝑑𝑢 =

∑︁
𝑘

𝛼𝑘𝑡
𝑘+1/(𝑘 + 1),

and𝑤 ′ is given by𝑤 ′ (𝑡) = −2𝑐′ (𝑡) ·𝑐𝜂 (𝑡)/∥𝑐𝜂 (𝑡)∥2.
Using integration by parts (

∫
1

0
𝑃𝑐
𝑘
𝑤 = [𝑃𝑐

𝑘
𝑤]1

0
−
∫

1

0
𝑃𝑐
𝑘
𝑤 ′), we obtain

Φ𝑐
𝑘
(𝜂) = −𝑤 (1)𝑃𝑐

𝑘
(1) − 2𝐹𝑐

1

[
(𝑐′ · 𝑐𝜂)𝑃𝑐𝑘

]
(62)

Similarly, noting𝑄𝑐
𝑘
(𝑡) := 𝑡𝑘𝑐′ (𝑡)⊥/(8𝜋) and �̃�𝑐

𝑘
(𝑡) =

∫ 𝑡
𝑢=0

𝑄𝑐
𝑘
(𝑢)𝑑𝑢

its primitive taking null value in 𝑡 = 0, we obtain

▽𝜂Φ𝑐𝑘 (𝜂) =𝑤 (1)�̃�
𝑐
𝑘
(1) + 2𝐹𝑐

1

[
(𝑐′ · 𝑐𝜂)�̃�𝑐𝑘 − (𝑄

𝑐
𝑘
· 𝑐𝜂)𝑐𝜂

]
(63)

Finally, 𝐻𝜂Φ
𝑐
𝑘
does not require any transformation and can be

rewritten as is in terms of 𝐹𝑐
𝑘
as

𝐻𝜂Φ
𝑐
𝑘
(𝜂) = 1

4𝜋
𝐹𝑐

1

[
𝑋𝑘

(
𝑐′⊥𝑐𝑇𝜂 + 𝑐𝜂𝑐′⊥

𝑇 + (𝑐′⊥ · 𝑐𝜂)𝐼2
)]

− 1

2𝜋
𝐹𝑐

2

[
𝑋𝑘 (𝑐′⊥ · 𝑐𝜂)𝑐𝜂𝑐𝑇𝜂

]
(64)

A.2.2 Fourth-order condition. Setting the fourth-order boundary
condition as a polynomial curve 𝐵𝑐 (𝑡) :=

∑
𝑘 𝑡

𝑘𝐵𝑐
𝑘
, the contribution

of curve 𝑐 to its diffusion can be expressed similarly:

𝑓 𝑐𝐵 (𝜂) :=

1∫
𝑡=0

−𝐵𝑐 (𝑡)𝑔(𝑐 (𝑡), 𝜂)𝑑𝑡 (65)

=

1∫
𝑡=0

𝐵𝑐 (𝑡)
∥𝑐𝜂 (𝑡)∥2

8𝜋
(1 − log(∥𝑐𝜂 (𝑡)∥))𝑑𝑡

=
∑︁
𝑘

𝐵𝑘𝑐

1∫
𝑡=0

𝑡𝑘 ∥𝑐𝜂 (𝑡)∥2

8𝜋
(1 − log(∥𝑐𝜂 (𝑡)∥))𝑑𝑡︸                                         ︷︷                                         ︸
=: Ψ𝑐

𝑘
(𝜂 )

which leads to our second biharmonic coordinate Ψ𝑐
𝑘
(𝜂). Its deriva-

tives are given by:

▽𝜂Ψ𝑐𝑘 (𝜂) =
1∫

𝑡=0

−𝑡𝑘𝑐𝜂 (𝑡)
8𝜋

(1 − 2 log(∥𝑐𝜂 (𝑡)∥))𝑑𝑡

𝐻𝜂Ψ
𝑐
𝑘
(𝜂) =

1∫
𝑡=0

𝑡𝑘 (1 − 2 log(∥𝑐𝜂 (𝑡)∥))
8𝜋

𝑑𝑡𝐼2 −
1∫

𝑡=0

𝑡𝑘𝑐𝜂 (𝑡)𝑐𝜂 (𝑡)𝑇

4𝜋 ∥𝑐𝜂 (𝑡)∥2
𝑑𝑡 .

As in Sec. A.2.1, we solve those integrals using integration by

parts. We note 𝑅𝑐
𝑘
(𝑡) := 𝑡𝑘 ∥𝑐𝜂 (𝑡)∥2/(8𝜋), 𝑣 (𝑡) := (1− log(∥𝑐𝜂 (𝑡)∥)),

𝑆𝑐
𝑘
(𝑡) := −𝑡𝑘𝑐𝜂 (𝑡)/(8𝜋), and 𝑤 (𝑡) := 1 − 2 log(∥𝑐𝜂 (𝑡)∥). 𝑅𝑐𝑘 (𝑡) and

𝑆𝑐
𝑘
(𝑡) are simple polynomials whose primitives can be computed

analytically, and𝑤 ′ (𝑡) = 2𝑣 ′ (𝑡) = −2𝑐′ (𝑡) ·𝑐𝜂 (𝑡)/∥𝑐𝜂 (𝑡)∥2.
Noting �̃�𝑐

𝑘
(𝑡) :=

∫ 𝑡
𝑢=0

𝑅𝑐
𝑘
(𝑢)𝑑𝑢 and 𝑆𝑐

𝑘
(𝑡) =

∫ 𝑡
𝑢=0

𝑆𝑐
𝑘
(𝑢)𝑑𝑢 the prim-

itives of 𝑅𝑐
𝑘
and 𝑆𝑐

𝑘
taking null values in 𝑡 = 0, we obtain closed-form

expressions for Ψ𝑐
𝑘
(𝜂) and its derivatives as

Ψ𝑐
𝑘
(𝜂) = 𝑣 (1)�̃�𝑐

𝑘
(1) + 𝐹𝑐

1

[
�̃�𝑐
𝑘
𝑐′· 𝑐𝜂

]
(66)

▽𝜂Ψ𝑐𝑘 (𝜂) =𝑤 (1)𝑆
𝑐
𝑘
(1) + 2𝐹𝑐

1

[
𝑆𝑐
𝑘
𝑐′· 𝑐𝜂

]
(67)

𝐻𝜂Ψ
𝑐
𝑘
(𝜂) =

𝑤 (1) + 2𝐹𝑐
1

[
𝑋𝑘+1𝑐′· 𝑐𝜂

]
8𝜋 (𝑘 + 1) 𝐼2 −

𝐹𝑐
1

[
𝑋𝑘𝑐𝜂𝑐

𝑇
𝜂

]
4𝜋

(68)

B Boundary-aligned stretches optimization
Weprovide in this section themathematical derivation of the boundary-

aligned stretch local optimization of Section 7.3.

Given an input Jacobian matrix 𝐽 , we optimize for

𝐽 = argmin

𝑗∈S𝑛
P𝑛 (𝐽 , 𝑗) := ∥ 𝐽 − 𝑗 ∥2𝐹 (69)
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Thanks to the trivial parameterization of 𝑆𝑂2, we can derive a

closed-form expression (instead of an iterative procedure such as sin-

gular value decomposition in the general case) for this minimization

procedure.

Since 𝐵𝑛 ∈ 𝑆𝑂2, we note that

P𝑛 (𝐽 , 𝑗) =∥ 𝐽 − 𝑗 ∥2𝐹
=∥ 𝐽 −𝑈 Σ𝐵𝑇𝑛 ∥2𝐹
=∥𝐵𝑇𝑛 𝐽𝐵𝑛 − 𝐵𝑇𝑛𝑈 Σ∥2𝐹 (70)

We note 𝐵𝑇𝑛 𝐽𝐵𝑛 =

(
𝑎 𝑏

𝑐 𝑑

)
, 𝐵𝑇𝑛𝑈 =

(
cos(𝜃 ) − sin(𝜃 )
sin(𝜃 ) cos(𝜃 )

)
and

Σ =

(
𝛼 0

0 𝛽

)
, 𝜃 parameterizing the rotation 𝑅𝜃 = 𝐵𝑇𝑛𝑈 and (𝛼, 𝛽)

being the two boundary/tangent stretches.

Noting (𝑐𝜃 , 𝑠𝜃 ) = (cos(𝜃 ), sin(𝜃 )) for simplicity, our penalty func-

tional (Eq. (70)) reads

P𝑛 (𝐽 , 𝑗) = (𝑎 − 𝛼𝑐𝜃 )2 + (𝑏 + 𝛽𝑠𝜃 )2 + (𝑐 − 𝛼𝑠𝜃 )2 + (𝑑 − 𝛽𝑐𝜃 )2 (71)

Setting its partial derivatives w.r.t. {𝜃, 𝛼, 𝛽} to 0 leads to

0 = 𝑐𝜃 (−𝑐𝛼 + 𝑏𝛽) + 𝑠𝜃 (𝑎𝛼 + 𝑑𝛽) (72)

𝛼 = 𝑎𝑐𝜃 + 𝑐𝑠𝜃 (73)

𝛽 = 𝑑𝑐𝜃 − 𝑏𝑠𝜃 (74)

Plugging the second and third equations in the first one leads to

an equation with 𝜃 as sole variable:

𝛿 (𝑠2

𝜃
− 𝑐2

𝜃
) + 𝜇𝑐𝜃𝑠𝜃 = 0 (75)

with

𝛿 := 𝑎𝑐 − 𝑏𝑑 (76)

𝜇 := 𝑎2 + 𝑑2 − 𝑏2 − 𝑐2 . (77)

Setting 𝑋 = 𝑐𝜃 , leading to 𝑠2

𝜃
= 1 − 𝑋 2

, we obtain a fourth-degree

polynomial in 𝑋 :

𝑋 2𝑤 (1 − 𝑋 2) − 𝛿2 = 0 (78)

with𝑤 := 4𝛿2 + 𝜇2
.

We set 𝑌 = 𝑋 2
and find 𝑌 = 𝑋 2 = 𝑐2

𝜃
verifying

−𝑤𝑌 2 +𝑤𝑌 − 𝛿2 = 0 (79)

The discriminant of this second degree polynomial is Δ = 𝑤2 −
4𝑤𝛿2 = 𝜇2𝑤 ≥ 0. This equation admits therefore always solutions,

given by:

𝑌 = 𝑐2

𝜃
=
𝑤 ±
√
Δ

2𝑤
=

1

2

± 𝜇

2

√
𝑤

(80)

We note that 𝑤 ≥ 𝜇2
leading to

𝜇

2

√
𝑤
≤ 1

2
, meaning that both so-

lutions are acceptable for a squared cosine, as both solutions are

contained in the range [0, 1].
At this point, while it may seem that many solutions may appear

(in particular, the sign of the cosine seems undefined from Eq. (80)),

we note that 𝜃 has to verify Eq. (75), meaning that any choice of

sign for the cosine leads to a fixed sign of the sine of 𝜃 :

sign(𝑠𝜃 ) = −sign(𝜇𝑐𝜃 )sign(𝛿 (𝑠2

𝜃
− 𝑐2

𝜃
)) (81)

resulting in two equivalent solutions (𝑐𝜃 , 𝑠𝜃 ) ≡ (−𝑐𝜃 ,−𝑠𝜃 ) corre-
sponding to the arbitrary orientation for the direction corresponding

to 𝜃 (dir(𝜃 ) ≡ dir(𝜃 + 𝜋)).

There are therefore two extrema values for 𝜃 , corresponding to

the local maximum and local minimum of P𝑛 (Eq. (71)).

Noting 𝛾0 = 1

2
+ 𝜇

2

√
𝑤
and 𝛾1 = 1

2
− 𝜇

2

√
𝑤
, we compute the corre-

sponding candidate values for the decomposition:

cos(𝜃𝑖 ) =
√
𝛾𝑖

sign𝑖 = −sign(𝜇 cos(𝜃𝑖 ))sign(𝛿 (1 − 2 cos(𝜃𝑖 )2))
sin(𝜃𝑖 ) = sign𝑖

√︁
1 − cos(𝜃𝑖 )2

𝛼𝑖 = 𝑎 cos(𝜃𝑖 ) + 𝑐 sin(𝜃𝑖 )
𝛽𝑖 = 𝑑 cos(𝜃𝑖 ) − 𝑏 sin(𝜃𝑖 )

and pick the solution giving the lowest penalty value (in Eq. (71)).

Finally, the solution to Eq. (69) is given by

argmin

𝑗∈S𝑛
P𝑛 (𝐽 , 𝑗) = 𝐵𝑛𝑅𝜃Σ𝐵𝑇𝑛 (82)

C Boundary-aligned stretches optimization under normal
rigidity constraints

We present in this appendix the solution to the projection procedure

𝐽 = argmin

𝑗∈S1

𝑛

P1

𝑛 (𝐽 , 𝑗) := ∥ 𝐽 − 𝑗 ∥2𝐹 (83)

that echoes the procedure presented in the previous appendix.

We recall that S1

𝑛 denotes the set of matrices whose stretch di-

rections are aligned onto 𝑛 and 𝑛⊥, and have a unit stretch in the

direction of 𝑛, i.e., 𝑗 ∈ S1

𝑛 if 𝑗 = 𝐵𝑛𝑅𝜃Σ𝐵
𝑇
𝑛 with Σ = 𝑑𝑖𝑎𝑔(1, 𝛽) (using

the notations of the previous appendix section).

Constraining Σ(0, 0) = 1 (i.e., 𝛼 = 1 compared with the previous

derivation) leads to a simplified functional to minimize:

P1

𝑛 (𝐽 , 𝑗) = (𝑎 − 𝑐𝜃 )2 + (𝑏 + 𝛽𝑠𝜃 )2 + (𝑐 − 𝑠𝜃 )2 + (𝑑 − 𝛽𝑐𝜃 )2 (84)

Setting its derivatives w.r.t. {𝜃, 𝛽} to 0 leads to

0 = 𝑐𝜃 (−𝑐 + 𝑏𝛽) + 𝑠𝜃 (𝑎 + 𝑑𝛽) (85)

𝛽 = 𝑑𝑐𝜃 − 𝑏𝑠𝜃 (86)

Plugging the second equation into the first one leads to

𝑏𝑑 (1 − 2𝑐2

𝜃
) + 𝑐𝑐𝜃 = 𝑠𝜃 (𝑎 + (𝑑2 − 𝑏2)𝑐𝜃 ) (87)

Setting 𝑋 = 𝑐𝜃 (𝑠2

𝜃
= 1 −𝑋 2

) and squaring this last equation leads

to a quartic polynomial in 𝑋 :

0 =𝑋 4
[
4𝑏2𝑑2 + (𝑑2 − 𝑏2)2

]
(88)

+𝑋 3
[
−4𝑏𝑐𝑑 + 2𝑎(𝑑2 − 𝑏2)

]
+𝑋 2

[
−4𝑏2𝑑2 + 𝑎2 + 𝑐2 − (𝑑2 − 𝑏2)2

]
+𝑋

[
2𝑏𝑐𝑑 − 2𝑎(𝑑2 − 𝑏2)

]
+1

[
𝑏2𝑑2 − 𝑎2

]
Given its roots {𝑟𝑖 } corresponding to extrema of Eq. (84),we com-

pute the corresponding candidate values for the decomposition:

cos(𝜃𝑖 ) = min(1,max(−1, 𝑟𝑖 ))
sign𝑖 = sign(𝑎 + (𝑑2 − 𝑏2) cos(𝜃𝑖 ))

sign(𝑏𝑑 (1 − 2 cos(𝜃𝑖 )2) + 𝑐 cos(𝜃𝑖 ))
sin(𝜃𝑖 ) = sign𝑖

√︁
1 − cos(𝜃𝑖 )2

𝛽𝑖 = 𝑑 cos(𝜃𝑖 ) − 𝑏 sin(𝜃𝑖 )
and pick the solution giving the lowest penalty value (in Eq. (84)).
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Finally, the solution to Eq. (83) is given by

argmin

𝑗∈S1

𝑛

P1

𝑛 (𝐽 , 𝑗) = 𝐵𝑛𝑅𝜃Σ𝐵𝑇𝑛 (89)
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